Stored Procedures:

Oracle's PL/SQL

How to Use Stored Procedures
with Oracle's PL/SQL

Overview

What are stored procedures?

0 Why do we need them?

How stored procedures are used
PL/SQL:

0 Language basics

0 Procedures & Functions

0 Database Operations and Cursors
0 Packages

What are Stored Procedures?

Simple: Procedures that are stored
in the database, and executed there

0 The ISO SQL standard calls them SQL
Persistent Stored Modules (SQL/PSM)

Why are stored procedures good?
O They improve abstraction

0 They improve performance

0 They improve maintainability

O They improve security

How Stored Procedures are Used

Write the procedure
Test it (either locally, or in a test DB)
Store it in the DB (in Oracle, use SQL*Plus)
Grant controlled access to it
Authorized DB clients can then call it:
0 Call is done on the client machine

O Call is transferred to the DB, along with any
parameters

O Procedure is executed on the DB

O Any data generated by the procedure is
transferred back to the client

PL/SQL: Language Basics

Oracle's implementation of SQL/PSM is
called PL/SQL

PL/SQL is available on the DB server, and
also in a version that can be used in client
software

PL/SQL is based on the Pascal/Ada family
of languages, and is strictly typed

Like Pascal, Ada, and SQL (and unlike C or
Java), PL/SQL is a case-insensitive
language

PL/SQL: Language Basics

PL/SQL is a block-structured language. Here's an

example of a PL/SQL block:

DECLARE
gty _on_hand NUMBER (5) ;
BEGIN
SELECT quantity INTO gty on_hand FROM inventory
WHERE product = 'TENNIS RACKET’
FOR UPDATE OF quantity;
IF gty _on_hand > 0 THEN -- check quantity
UPDATE inventory SET quantity = quantity - 1
WHERE product = ’'TENNIS RACKET';
INSERT INTO purchase_record
VALUES (’Tennis racket purchased’, SYSDATE);
ELSE
INSERT INTO purchase_record
VALUES (’Out of tennis rackets’, SYSDATE);
END IF;
COMMIT;
END;

PL/SQL: Language Basics

A PL/SQL block consists of:

0 A Declaration Section (optional -- starts
with DECLARE)

O An Execution Section (starts with BEGIN)

0 Within the Execution Section, an
(optional) Exception Section (starts with
EXCEPTION)

A PL/SQL block ends with END;

PL/SQL blocks may nest (i.e., you can
have one or more blocks within a block)

PL/SQL: Language Basics

PL/SQL has two kinds of comments:
0 Single-line comments:

salary := salary + salary * 0.1;
-- Give 10% bonus

0 Multi-line comments:
/*
You should always place block-style
comments before every procedure or
function definition, describing its
use, parameters and any return value.

*/

PL/SQL: Language Basics

PL/SQL variables:
O Are declared in the DECLARE section

0 Must have an Oracle SQL datatype, or a
PL/SQL datatype

0 May be initialized where they are declared
0 Normal block scoping rules apply

DECLARE
part_no INTEGER;

in_stock BOOLEAN := FALSE; -- PL/SQL datatype, initialized

BEGIN

PL/SQL: Language Basics

You can assign values to PL/SQL variables in
the Execution Section:

0 By using an assignment statement
(note the :=1):
tax := price * tax rate;
0 By selecting database values into it:
SELECT sal * 0.10 INTO bonus
FROM emp
WHERE empno = emp id;
(This is called a single-row SELECT statement,
a.k.a. a singleton SELECT statement.)

PL/SQL: Language Basics

The PL/SQL IF statement has three forms:

O IF-THEN o |IF-ELSEIF
IF <condition> IF <condition-1>
THEN THEN
END IF; ELSEIF <condition-2>

0 IF-THEN-ELSE THEN

IF <condition> ELSEIF <condition-N>

THEN THEN

ELSE [ELSE
“oe e]

END IF; END IF;

PL/SQL: Language Basics

PL/SQL has three forms of loop:

o Simple loop: o Cursor FOR loop:
LOOP FOR <record-index>
. .. IN <cursor—-name>
END LOOP; LOOP

o Numeric FOR loop: e
END LOOP;

FOR <loop-index>
IN [REVERSE] o WHILE loop:
<low-num>...<hi-hum> WHILE <condition>
LOOP LOOP
EK&; &J)OP; ENﬁ;jLOOP;
and two forms of exit from loop execution:
o Unconditional: o Conditional:
EXIT [<label>]; EXIT [<label>]

WHEN <condition>;

PL/SQL: Language Basics

The optional Exception Section of a PL/SQL block contains

one or more Exception (WHEN) Handlers:
DECLARE

BEGIN
EXCEPTION
WHEN <exception-name> [OR <exception-name>]...
THEN
<executable-statements>
[WHEN <exception-name> [OR <exception-name>]...
THEN
<executable-statements>]...
[WHEN OTHERS
THEN

<executable-statements>]
END;

PL/SQL: Language Basics

There are four kinds of exceptions in PL/SQL:

0 Named system exceptions
Exceptions that have been declared by PL/SQL (in the
STANDARD PL/SQL package), and raised as a result of an
error in PL/SQL or DB processing.

O Named programmer-defined exceptions
Exceptions that are declared by the programmer, and raised
explicitly as a result of errors in application code.

0 Unnamed system exceptions
Exceptions that are not declared by PL/SQL, but can be raised
as a result of an error in PL/SQL or DB processing.

0 Unnamed programmer-defined exceptions
Exceptions that are declared using an error number
(between -20000 and -20999) and a message, and raised
on the server by the programmer using a
RAISE APPLICATION ERROR call.

PL/SQL: Language Basics

Here are some named system exceptions:
CURSOR_ALREADY_OPEN
DUP_VAL_ON_INDEX
INVALID_CURSOR
INVALID_NUMBER
LOGIN_DENIED
NO_DATA_FOUND
NOT_LOGGED_ON
PROGRAM_ERROR
STORAGE_ERROR
TIMEOUT_ON_RESOURCE
TOO_MANY_ROWS
TRANSACTION_BACKED_OUT
VALUE_ERROR
ZERO_DIVIDE

O 0O o0Oo0Oo0oooo0oooooo g

PL/SQL: Language Basics

Here is an example of the use of named programmer-
defined exceptions:

DECLARE
invalid account no EXCEPTION;
account balance negative EXCEPTION;
BEGIN

<executable statements>
IF balance < 0
THEN
RAISE account balance negative;
END IF;
<executable statements>
EXCEPTION
WHEN invalid account no
THEN
<executable statements>
WHEN account balance negative
THEN
<executable statements>
END;

PL/SQL: Language Basics

You can use the EXCEPTION INIT pragma to associate an

unnamed system exception with a programmer-defined exception.

For example, if | wish to catch the SQL error:

ORA-2292 violated integrity constraining (OWNER.CONSTRAINT) -
child record found

(which occurs when | try to delete a parent record while there are
still child records in that table)

and translate itintoa still have employees exception:
DECLARE
still have employees EXCEPTION;
PRAGMA EXCEPTION_INIT(still have_employees, -2292);
BEGIN

DELETE FROM company
WHERE company id = specified company_ id;
EXCEPTION

WHEN still_have_ employees

THEN

DBMS_OUTPUT. PUT_ LINE
('Please delete employees for company first.');
END;

PL/SQL: Language Basics

You use unnamed programmer-defined exceptions to
report application-specific errors back to the client.

A call to the following procedure achieves this:
PROCEDURE RAISE APPLICATION ERROR
(error number IN NUMBER, error msg IN VARCHAR?2) ;

For example:

BEGIN
IF account_id < 0
THEN
RAISE_APPLICATION_ERROR
(-20011, 'Account ID must be a positive number');
END IF;
END;

PL/SQL: Database Interactions

You can execute SQL statements within a
PL/SQL block.

Normally, transactions are begun implicitly with
the first SQL statement executed.

You can specify the attributes of a transaction
using a SET TRANSACTION statement:

SET TRANSACTION READ ONLY;

SET TRANSACTION READ WRITE;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

PL/SQL: Database Interactions

You can commit or rollback a transaction within a
PL/SQL block:

COMMIT [WORK] ;

ROLLBACK [WORK] ;

PL/SQL: Database Interactions

You can execute DML statements within a
PL/SQL block:

0 INSERT, DELETE, and UPDATE statements can be
executed in-line, normally.

0 SELECT ... INTO statements (single-row select
statements) can be executed in-line, normally.

0 SELECT statements that [possibly] return multiple
rows cannot be executed normally. Because such
statements return sets of values, and PL/SQL is
not a set-oriented language, they have to be
handled specially, using cursors.

0 SQL statements in a PL/SQL block may refer to
PL/SQL variables visible to that block

PL/SQL: Database Interactions

A cursor is like a pointer into a table in the database.

You declare a cursor in the declaration section of a PL/SQL
block:
DECLARE
CURSOR employee cursor IS SELECT * FROM employee;
Then you use the cursor declaration in the execution
section:

0 Use an OPEN statement to open the cursor

0 Use FETCH statements to fetch rows using the cursor

O When done, use a CLOSE statement to close the cursor
and release its resources. (Note: Locks, as usual, are

not normally released until the transaction is committed
or rolled back.)

PL/SQL: Database Interactions

Alternatively, you can use a cursor FOR loop in the
execution section:
DECLARE
CURSOR employee cursor IS SELECT * FROM employee;
employee record employee cursor3ROWTYPE;
BEGIN
FOR employee record IN employee cursor
LOOP
—-- Access column data in the employee record
-- for the current row, and use it to execute
-— other PL/SQL statements, including other SQL
-- statements.
END LOOP;
END;

PL/SQL: Database Interactions

To obtain information about the current status of your
cursor, you use cursor attributes:

$FOUND Returns TRUE if the record was fetched successfully, FALSE

otherwise

$NOTFOUND | Returns TRUE if the record was not fetched successfully, FALSE

otherwise

$ROWCOUNT | Returns the number of records that have been fetched from the

cursor

$ISOPEN Returns TRUE if the cursor is open, FALSE otherwise

PL/SQL: Database Interactions

Here's an example of using cursor attributes:

DECLARE
CURSOR employee cursor IS SELECT * FROM employee;
employee record employee cursor3ROWTYPE;

BEGIN
IF NOT employee_ cursor3%ISOPEN
THEN
OPEN employee cursor;
END IF;
WHILE employee_cursor3%FOUND
LOOP

DBMS OUTPUT.PUT LINE
('Fetched record number ' ||
TO_CHAR (employee_cursor3%ROWCOUNT)) ;
FETCH employee cursor INTO employee_record;
END LOOP;
CLOSE employee cursor;
END;

PL/SQL: Procedures & Functions

So far, we've just talked about PL/SQL blocks.
There are three kinds of "top-level" blocks:

0 An anonymous block
You can use an anonymous block directly in a client
program. It gets passed to the database for execution,
and its results passed back to the client. However, it
doesn't get stored in the database.

0O A procedure or function

In order to store executable code in the database, you
have to use PL/SQL procedures and/or functions.

The basic difference between procedures and functions is
that a function returns a single value, while a procedure
does not return any value.

PL/SQL: Procedures & Functions

A PL/SQL procedure looks as follows:

PROCEDURE <name> [(<parameter> [, <parameter> ...])]
IS
<declarations>
BEGIN
<executable statements>
[EXCEPTION

<exception handler> [<exception handler>] ...]

END [<name>] ;

Note that the keyword DECLARE disappears in a
procedure, replaced by the keyword Ts.

PL/SQL: Procedures & Functions

A PL/SQL function looks as follows:

FUNCTION <name> [(<parameter> [, <parameter> ...]) 1]
RETURN <return-datatype>

IS
<declarations>

BEGIN

<executable statements>
RETURN <value-expression>;
[EXCEPTION
<exception handler> [<exception handler>] ...]

END [<name>] ;
The return datatype of a function may be any datatype
(and sometimes complex structures) supported by
PL/SQL.

PL/SQL: Procedures & Functions

A PL/SQL procedure or function may accept zero or more
parameters.

If the procedure or function has zero parameters, both the
procedure/function definition and a call to it dispense with
the parentheses. (This is the Pascal/Ada style.)

PROCEDURE do_work -- procedure definition
Is
BEGIN
do _more work; -- call to another procedure

END doWork ;

FUNCTION does nothing RETURN BOOLEAN IS
BEGIN

RETURN does even less; -- call function, returns value
END;

PL/SQL: Procedures & Functions

A parameter for a PL/SQL procedure or function has the
following form:

<parameter-name> [<parameter-mode>] <parameter-type>

where <parameter-mode> is:
IN | OUT | IN OUT

The parameter mode may be one of:
0 IN -- (the default) specifies the parameter is read-only
O OUT -- specifies the parameter is write-only
O IN OUT -- specifies the parameter is read-write

For example:
PROCEDURE predict activity

(last_date IN DATE, -- input only
task desc IN OUT VARCHAR2, -- input and output
next date out OUT DATE) —-— output only

IS coo

PL/SQL: Procedures & Functions

A parameter for a PL/SQL procedure or function (or any other
PL/SQL variable declaration) can specify a datatype:

0 A SQL datatype: INTEGER, FLOAT, VARCHAR, efc.
0 A PL/SQL datatype: BOOLEAN, a record type, etc.
O An anchored datatype:
<variable-name> <type-attribute>$TYPE
where <type-attribute> can be any of the following:
A previously declared PL/SQL variable name
A table column in the format "table.column"
For example:
total sales NUMBER(20,2);
monthly sales total sales%TYPE;
comp id company.company id%TYPE;
You can also anchor to a NOT NULL datatype
(PL/SQL variables can be declared to be NOT NULL, as well as
columns in tables.)

PL/SQL: Procedures & Functions

Here's an example of a PL/SQL procedure:
PROCEDURE apply discount
(company_id_in IN company.company id%TYPE,
discount_in IN NUMBER)
Is

min_discount CONSTANT NUMBER .05;

max_discount CONSTANT NUMBER .25;
invalid discount EXCEPTION;
BEGIN
IF discount_in BETWEEN min_discount AND max_discount
THEN

UPDATE item
SET item_amount = item_amount* (l-discount_in)
WHERE EXISTS (SELECT 'x' FROM order
WHERE order.order_id = item.order_id
AND order.company_id = company_id in);
IF SQL%ROWCOUNT = O
THEN
RAISE NO_DATA FOUND;
END IF;
ELSE
RAISE invalid discount;
END IF;
EXCEPTION
WHEN invalid_discount
THEN DBMS_ OUTPUT.PUT LINE ('The specified discount is invalid');
WHEN NO_DATA_ FOUND
THEN DBMS_OUTPUT.PUT_LINE ('No orders for company: ' ||
TO_CHAR (company_id in));
END apply discount;

PL/SQL: Procedures & Functions

Here's an example of a PL/SQL function:
FUNCTION total sales
(company id in IN company.company id%TYPE,

status_in IN order.status code%TYPE := NULL)
RETURN NUMBER
Is
status_int order.status code%TYPE := UPPER(status_in);

CURSOR sales_cursor (status_in IN status code%TYPE) IS
SELECT SUM(amount*discount)
FROM item
WHERE EXISTS (SELECT 'X' FROM order
WHERE order.order id = item.order id
AND company id = company id in
AND status_code LIKE status_in);
return value NUMBER;
BEGIN
OPEN sales cursor (status_int);
FETCH sales cursor INTO return value;
IF sales_ cursor3sNOTFOUND
THEN
CLOSE sales cursor;
RETURN NULL;
ELSE
CLOSE sales cursor;
RETURN return value;
END IF;
END total sales;

PL/SQL: Packages

It is a good idea to organize your PL/SQL procedures and
functions (and other objects) into one or more packages.

There are two parts to a package:

o The package specification-- the declaration of the

package interface:
PACKAGE <package-name>
Is
[declarations of variables and types
[specifications of cursors
[specifications of modules]
D

END <package-name>;

o The package body -- the implementation
PACKAGE BODY <package-name>
Is
[declarations of variables and types
[specification and SELECT statements of cursors
[specification and body of modules]
[BEGIN
<executable statements>]
[EXCEPTION
<exception handlers>]
END <package-name>;

PL/SQL: Packages

A major benefit of packages is that they provide
modularization of your procedures, functions,
cursors, variables, etc.

The specification defines the public parts of the
package -- those that are visible to the outside
world.

The package body defines the private parts of
the package -- those that are not visible to the
outside world. This allows the implementation to
be private, and perhaps changed over time.

PL/SQL: Packages

When calling PL/SQL procedures and functions that reside
inside a package:
o From inside the same package:
call me(argl, arg2);

o From outside the package, but from within the same schema
as the stored package:

my package.call me(argl, arg2);

o From outside the package, and outside the stored package
schema:

my schema.my package.call me(argl, arg2);

When calling PL/SQL procedures and functions that do not
reside inside a package, omit the package name.

PL/SQL: Using SQL*Plus

To create a PL/SQL procedure or function from SQL*Plus:

CREATE [OR REPLACE]

PROCEDURE apply discount
(company id in IN company.company id%TYPE,
discount in IN NUMBER)

IS

min discount CONSTANT NUMBER := .05;
max_discount CONSTANT NUMBER := .25;
BEGIN
END apply discount;
/ <-- Notice the slash!

CREATE [OR REPLACE]
FUNCTION total sales
(company id in IN company.company id%TYPE,
status_in IN order.status_code%TYPE := NULL)
RETURN NUMBER
IS

END total sales;
/ <-- Notice the slash!

PL/SQL: Using SQL*Plus

If you try to create a procedure or function, and there
are errors, you'll see something like:

SQL> CREATE PROCEDURE getCompanyBalance (company id IN INTEGER)
2 BEGIN

3 balance = 345234.89;

4 END;

5 /A

Warning: Procedure created with compilation errors.

SQL>
But you won't see any indication of what the errors
were.

You have to ask SQL*Plus for them...

PL/SQL: Using SQL*Plus

The SHOW ERRORS command will give you more
information:

SQL> show errors
Errors for PROCEDURE GETCOMPANYBALANCE:

LINE/COL ERROR

2/1 PLS-00103: Encountered the symbol "BEGIN" when expecting one of
the following:

; is with authid deterministic parallel_enable as

We left out an IS keyword.

However, this is only one error of several, so let's fix it, and
try again...

PL/SQL: Using SQL*Plus

Try again:
SQL> CREATE PROCEDURE getCompanyBalance (company id IN INTEGER) IS

2 BEGIN
3 balance = 345234.89;
4 END;
5 /

CREATE PROCEDURE getCompanyBalance (company id IN INTEGER) IS

*
ERROR at line 1:
ORA-00955: name is already used by an existing object

Whoops! Even though there were compilation errors, it still
stored the procedure in the database schema.

PL/SQL: Using SQL*Plus

Try yet again:
SQL> CREATE OR REPLACE
2 PROCEDURE getCompanyBalance (company id IN INTEGER) IS
3 BEGIN
4 balance = 345234.89;
5 END;
6 /

Warning: Procedure created with compilation errors.

What's wrong now? Ask SQL*Plus again...

PL/SQL: Using SQL*Plus

Try SHOW ERRORS again:

SQL> show errors
Errors for PROCEDURE GETCOMPANYBALANCE:

LINE/COL ERROR

3/10 PLS-00103: Encountered the symbol "=" when expecting one of the
following:
= . (e % ;
The symbol ":= was inserted before "=" to continue.

OK, let's fix the : = problem, and try again...

PL/SQL: Using SQL*Plus

Try again:
SQL> CREATE OR REPLACE
2 PROCEDURE getCompanyBalance (company id IN INTEGER) IS

3 BEGIN

4 balance := 345234.89;
5 END;

6 /

Warning: Procedure created with compilation errors.

What's wrong now? Let's try that SHOW ERRORS again...

PL/SQL: Using SQL*Plus

Try SHOW ERRORS again:

SQL> show errors
Errors for PROCEDURE GETCOMPANYBALANCE:

LINE/COL ERROR

3/2 PLS-00201: identifier 'BALANCE' must be declared
3/2 PL/SQL: Statement ignored

OK, let's fix that, and hope it's the last one...

PL/SQL: Using SQL*Plus

Try again:
SQL> CREATE OR REPLACE
2 PROCEDURE getCompanyBalance (company id IN INTEGER) IS

3 balance REAL;

4 BEGIN

5 balance := 345234.89;
6 END;

7/

Procedure created.

Yeah!

PL/SQL: Using SQL*Plus

Of course, we forgot that, if we want to create a procedure
to return a value, it can't be a procedure, but must be a

function. So let's change it:

SQL> CREATE OR REPLACE
2 FUNCTION getCompanyBalance (company id IN INTEGER)
3 RETURN REAL
4 IS

5 balance REAL;

6

7

8

BEGIN
balance := 345234.89;
RETURN balance;

9 END;

10 7/

CREATE OR REPLACE
*

ERROR at line 1:
ORA-00955: name is already used by an existing object

Rats!!!!

PL/SQL: Using SQL*Plus

We must first drop the procedure, before we can create a
function of the same name:

SQL> DROP PROCEDURE getCompanyBalance;
Procedure dropped.

SQL> CREATE OR REPLACE
2 FUNCTION getCompanyBalance (company id IN INTEGER)
RETURN REAL
IS
balance REAL;
BEGIN
balance := 345234.89;
RETURN balance;
END;
/

O W o J o Ul b W

-

Function created.

Eureka!

PL/SQL: Using SQL*Plus

What if we want to interact with the procedure or
function from within SQL*Plus?

There is a special PL/SQL package, DBMS OUTPUT.
It contains the following procedures: B

0 PUT (a VARCHAR2)

0 PUT (a NUMBER)

0 PUT (a DATE)

0 PUT LINE (a VARCHAR2)

0 PUT_LINE (a NUMBER)

0 PUT LINE (a DATE)

0 NEW LINE

0 and a number of others

They allow the PL/SQL procedure or function to
communicate with the client.

PL/SQL: Using SQL*Plus

Let's try it:
SQL> CREATE OR REPLACE
2 PROCEDURE helloWorld
Is
BEGIN
DBMS OUTPUT.PUT_LINE ('Hello, PL/SQL world!');
END;
/

~ o U s W

Procedure created.
SQL> execute helloWorld;

PL/SQL procedure successfully completed.

So why didn't we get any output?

PL/SQL: Using SQL*Plus

It turns out you need to tell SQL*Plus to
take notice of the server output:

SQL> set serveroutput on
SQL> execute helloWorld;
Hello, PL/SQL world!

PL/SQL procedure successfully completed.

Finally!

PL/SQL: Using SQL*Plus

What if you have created your PL/SQL object in the
schema, but you don't have its source handy?

No problem; you can query the database to get the

source:
SQL> SELECT TEXT
2 FROM USER_SOURCE
3 WHERE name = 'HELLOWORLD'
4 AND type = 'PROCEDURE'
5 ORDER BY LINE;

PROCEDURE helloWorld

Is

BEGIN

DBMS_OUTPUT.PUT LINE ('Hello, PL/SQL world!');
END;

PL/SQL: Privileges Required

In order to create a procedural object, you must have the
CREATE PROCEDURE system privilege (which is part of
the RESOURCE role)
If the procedural object will be placed in another user's
schema, then you must have CREATE ANY PROCEDURE
privilege
To allow another user to execute your procedural object,
that user must be granted EXECUTE privilege on the
object:

GRANT EXECUTE ON my procedure TO bryan;
Bryan will then be able to execute that procedure, even if
he does not have privileges on any of the tables which
the procedure uses.

