
Stored Procedures:
Oracle's PL/SQL

How to Use Stored Procedures
with Oracle's PL/SQL

11/19/02 2

Overview
■ What are stored procedures?

◆ Why do we need them?
■ How stored procedures are used
■ PL/SQL:

◆ Language basics
◆ Procedures & Functions
◆ Database Operations and Cursors
◆ Packages

11/19/02 3

What are Stored Procedures?
■ Simple: Procedures that are stored

in the database, and executed there
◆ The ISO SQL standard calls them SQL

Persistent Stored Modules (SQL/PSM)
■ Why are stored procedures good?

◆ They improve abstraction
◆ They improve performance
◆ They improve maintainability
◆ They improve security

11/19/02 4

How Stored Procedures are Used
■ Write the procedure
■ Test it (either locally, or in a test DB)
■ Store it in the DB (in Oracle, use SQL*Plus)
■ Grant controlled access to it
■ Authorized DB clients can then call it:

◆ Call is done on the client machine
◆ Call is transferred to the DB, along with any

parameters
◆ Procedure is executed on the DB
◆ Any data generated by the procedure is

transferred back to the client

11/19/02 5

PL/SQL: Language Basics
■ Oracle's implementation of SQL/PSM is

called PL/SQL
■ PL/SQL is available on the DB server, and

also in a version that can be used in client
software

■ PL/SQL is based on the Pascal/Ada family
of languages, and is strictly typed

■ Like Pascal, Ada, and SQL (and unlike C or
Java), PL/SQL is a case-insensitive
language

11/19/02 6

PL/SQL: Language Basics
■ PL/SQL is a block-structured language. Here's an

example of a PL/SQL block:
DECLARE

qty_on_hand NUMBER(5);
BEGIN

SELECT quantity INTO qty_on_hand FROM inventory
WHERE product = ’TENNIS RACKET’
FOR UPDATE OF quantity;

IF qty_on_hand > 0 THEN -- check quantity
UPDATE inventory SET quantity = quantity - 1

WHERE product = ’TENNIS RACKET’;
INSERT INTO purchase_record

VALUES (’Tennis racket purchased’, SYSDATE);
ELSE

INSERT INTO purchase_record
VALUES (’Out of tennis rackets’, SYSDATE);

END IF;
COMMIT;

END;

11/19/02 7

PL/SQL: Language Basics
■ A PL/SQL block consists of:

◆ A Declaration Section (optional -- starts
with DECLARE)

◆ An Execution Section (starts with BEGIN)
◆ Within the Execution Section, an

(optional) Exception Section (starts with
EXCEPTION)

■ A PL/SQL block ends with END;
■ PL/SQL blocks may nest (i.e., you can

have one or more blocks within a block)

11/19/02 8

PL/SQL: Language Basics
■ PL/SQL has two kinds of comments:

◆ Single-line comments:
salary := salary + salary * 0.1;

-- Give 10% bonus
◆ Multi-line comments:

/*
You should always place block-style
comments before every procedure or
function definition, describing its
use, parameters and any return value.

*/

11/19/02 9

PL/SQL: Language Basics
■ PL/SQL variables:

◆ Are declared in the DECLARE section
◆ Must have an Oracle SQL datatype, or a

PL/SQL datatype
◆ May be initialized where they are declared
◆ Normal block scoping rules apply

DECLARE
part_no INTEGER;
in_stock BOOLEAN := FALSE; -- PL/SQL datatype, initialized
...

BEGIN
...

11/19/02 10

PL/SQL: Language Basics
■ You can assign values to PL/SQL variables in

the Execution Section:
◆ By using an assignment statement

(note the := !):
tax := price * tax_rate;

◆ By selecting database values into it:
SELECT sal * 0.10 INTO bonus
FROM emp
WHERE empno = emp_id;

(This is called a single-row SELECT statement,
a.k.a. a singleton SELECT statement.)

11/19/02 11

PL/SQL: Language Basics
■ The PL/SQL IF statement has three forms:

◆ IF-THEN
IF <condition>
THEN
...

END IF;
◆ IF-THEN-ELSE

IF <condition>
THEN
...

ELSE
...

END IF;

◆ IF-ELSEIF
IF <condition-1>
THEN
...

ELSEIF <condition-2>
THEN
...

ELSEIF <condition-N>
THEN
...

[ELSE
...]

END IF;

11/19/02 12

PL/SQL: Language Basics
■ PL/SQL has three forms of loop:

◆ Simple loop:
LOOP
...

END LOOP;
◆ Numeric FOR loop:

FOR <loop-index>
IN [REVERSE]
<low-num>...<hi-hum>

LOOP
...

END LOOP;

◆ Cursor FOR loop:
FOR <record-index>
IN <cursor-name>

LOOP
...

END LOOP;
◆ WHILE loop:

WHILE <condition>
LOOP
...

END LOOP;
■ and two forms of exit from loop execution:

◆ Unconditional:
EXIT [<label>];

◆ Conditional:
EXIT [<label>]
WHEN <condition>;

11/19/02 13

PL/SQL: Language Basics
■ The optional Exception Section of a PL/SQL block contains

one or more Exception (WHEN) Handlers:
DECLARE

...
BEGIN

...
EXCEPTION

WHEN <exception-name> [OR <exception-name>]...
THEN

<executable-statements>
[WHEN <exception-name> [OR <exception-name>]...

 THEN
 <executable-statements>]...
[WHEN OTHERS
 THEN

<executable-statements>]
END;

11/19/02 14

PL/SQL: Language Basics
■ There are four kinds of exceptions in PL/SQL:

◆ Named system exceptions
✦ Exceptions that have been declared by PL/SQL (in the
STANDARD PL/SQL package), and raised as a result of an
error in PL/SQL or DB processing.

◆ Named programmer-defined exceptions
✦ Exceptions that are declared by the programmer, and raised

explicitly as a result of errors in application code.
◆ Unnamed system exceptions

✦ Exceptions that are not declared by PL/SQL, but can be raised
as a result of an error in PL/SQL or DB processing.

◆ Unnamed programmer-defined exceptions
✦ Exceptions that are declared using an error number

(between -20000 and -20999) and a message, and raised
on the server by the programmer using a
RAISE_APPLICATION_ERROR call.

11/19/02 15

PL/SQL: Language Basics
■ Here are some named system exceptions:

◆ CURSOR_ALREADY_OPEN
◆ DUP_VAL_ON_INDEX
◆ INVALID_CURSOR
◆ INVALID_NUMBER
◆ LOGIN_DENIED
◆ NO_DATA_FOUND
◆ NOT_LOGGED_ON
◆ PROGRAM_ERROR
◆ STORAGE_ERROR
◆ TIMEOUT_ON_RESOURCE
◆ TOO_MANY_ROWS
◆ TRANSACTION_BACKED_OUT
◆ VALUE_ERROR
◆ ZERO_DIVIDE

11/19/02 16

PL/SQL: Language Basics
■ Here is an example of the use of named programmer-

defined exceptions:
DECLARE

invalid_account_no EXCEPTION;
account_balance_negative EXCEPTION;

BEGIN
 <executable statements>
IF balance < 0
THEN

RAISE account_balance_negative;
END IF;
 <executable statements>
EXCEPTION

WHEN invalid_account_no
THEN

<executable statements>
WHEN account_balance_negative
THEN

<executable statements>
END;

11/19/02 17

PL/SQL: Language Basics
■ You can use the EXCEPTION_INIT pragma to associate an

unnamed system exception with a programmer-defined exception.
■ For example, if I wish to catch the SQL error:

ORA-2292 violated integrity constraining (OWNER.CONSTRAINT) -
child record found

(which occurs when I try to delete a parent record while there are
still child records in that table)
and translate it into a still_have_employees exception:
DECLARE

still_have_employees EXCEPTION;
PRAGMA EXCEPTION_INIT(still_have_employees, -2292);

BEGIN
DELETE FROM company
WHERE company_id = specified_company_id;
EXCEPTION

WHEN still_have_employees
THEN

DBMS_OUTPUT.PUT_LINE
('Please delete employees for company first.');

END;
11/19/02 18

PL/SQL: Language Basics
■ You use unnamed programmer-defined exceptions to

report application-specific errors back to the client.
■ A call to the following procedure achieves this:

PROCEDURE RAISE_APPLICATION_ERROR
(error_number IN NUMBER, error_msg IN VARCHAR2);

■ For example:

BEGIN
IF account_id < 0
THEN

RAISE_APPLICATION_ERROR
(-20011, 'Account ID must be a positive number');

END IF;
END;

11/19/02 19

PL/SQL: Database Interactions
■ You can execute SQL statements within a

PL/SQL block.
■ Normally, transactions are begun implicitly with

the first SQL statement executed.
■ You can specify the attributes of a transaction

using a SET TRANSACTION statement:
SET TRANSACTION READ ONLY;
SET TRANSACTION READ WRITE;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

11/19/02 20

PL/SQL: Database Interactions
■ You can commit or rollback a transaction within a

PL/SQL block:

COMMIT [WORK];

ROLLBACK [WORK];

11/19/02 21

PL/SQL: Database Interactions
■ You can execute DML statements within a

PL/SQL block:
◆ INSERT, DELETE, and UPDATE statements can be

executed in-line, normally.
◆ SELECT ... INTO statements (single-row select

statements) can be executed in-line, normally.
◆ SELECT statements that [possibly] return multiple

rows cannot be executed normally. Because such
statements return sets of values, and PL/SQL is
not a set-oriented language, they have to be
handled specially, using cursors.

◆ SQL statements in a PL/SQL block may refer to
PL/SQL variables visible to that block

11/19/02 22

PL/SQL: Database Interactions
■ A cursor is like a pointer into a table in the database.
■ You declare a cursor in the declaration section of a PL/SQL

block:
DECLARE

CURSOR employee_cursor IS SELECT * FROM employee;
■ Then you use the cursor declaration in the execution

section:
◆ Use an OPEN statement to open the cursor
◆ Use FETCH statements to fetch rows using the cursor
◆ When done, use a CLOSE statement to close the cursor

and release its resources. (Note: Locks, as usual, are
not normally released until the transaction is committed
or rolled back.)

11/19/02 23

PL/SQL: Database Interactions
■ Alternatively, you can use a cursor FOR loop in the

execution section:
DECLARE

CURSOR employee_cursor IS SELECT * FROM employee;
employee_record employee_cursor%ROWTYPE;

BEGIN
FOR employee_record IN employee_cursor
LOOP

-- Access column data in the employee_record
-- for the current row, and use it to execute
-- other PL/SQL statements, including other SQL
-- statements.

END LOOP;
END;

11/19/02 24

PL/SQL: Database Interactions
■ To obtain information about the current status of your

cursor, you use cursor attributes:

%FOUND Returns TRUE if the record was fetched successfully, FALSE
otherwise

%NOTFOUND Returns TRUE if the record was not fetched successfully, FALSE
otherwise

%ROWCOUNT Returns the number of records that have been fetched from the
cursor

%ISOPEN Returns TRUE if the cursor is open, FALSE otherwise

11/19/02 25

PL/SQL: Database Interactions
■ Here's an example of using cursor attributes:

DECLARE
CURSOR employee_cursor IS SELECT * FROM employee;
employee_record employee_cursor%ROWTYPE;

BEGIN
IF NOT employee_cursor%ISOPEN
THEN

OPEN employee_cursor;
END IF;
WHILE employee_cursor%FOUND
LOOP

DBMS_OUTPUT.PUT_LINE
('Fetched record number ' ||

TO_CHAR(employee_cursor%ROWCOUNT));
FETCH employee_cursor INTO employee_record;

END LOOP;
CLOSE employee_cursor;

END;
11/19/02 26

PL/SQL: Procedures & Functions
■ So far, we've just talked about PL/SQL blocks.
■ There are three kinds of "top-level" blocks:

◆ An anonymous block
✦ You can use an anonymous block directly in a client

program. It gets passed to the database for execution,
and its results passed back to the client. However, it
doesn't get stored in the database.

◆ A procedure or function
✦ In order to store executable code in the database, you

have to use PL/SQL procedures and/or functions.
✦ The basic difference between procedures and functions is

that a function returns a single value, while a procedure
does not return any value.

11/19/02 27

PL/SQL: Procedures & Functions
■ A PL/SQL procedure looks as follows:

PROCEDURE <name> [(<parameter> [, <parameter> ...])]
IS

<declarations>
BEGIN

<executable statements>
[EXCEPTION

<exception handler> [<exception handler>] ...]
END [<name>] ;

■ Note that the keyword DECLARE disappears in a
procedure, replaced by the keyword IS.

11/19/02 28

PL/SQL: Procedures & Functions
■ A PL/SQL function looks as follows:

FUNCTION <name> [(<parameter> [, <parameter> ...])]
RETURN <return-datatype>

IS
<declarations>

BEGIN
<executable statements>
RETURN <value-expression>;

[EXCEPTION
<exception handler> [<exception handler>] ...]

END [<name>] ;
■ The return datatype of a function may be any datatype

(and sometimes complex structures) supported by
PL/SQL.

11/19/02 29

PL/SQL: Procedures & Functions
■ A PL/SQL procedure or function may accept zero or more

parameters.
■ If the procedure or function has zero parameters, both the

procedure/function definition and a call to it dispense with
the parentheses. (This is the Pascal/Ada style.)
PROCEDURE do_work -- procedure definition
IS
BEGIN

do_more_work; -- call to another procedure
END doWork ;

FUNCTION does_nothing RETURN BOOLEAN IS
BEGIN

RETURN does_even_less; -- call function, returns value
END;

11/19/02 30

PL/SQL: Procedures & Functions
■ A parameter for a PL/SQL procedure or function has the

following form:
<parameter-name> [<parameter-mode>] <parameter-type>
where <parameter-mode> is:

 IN | OUT | IN OUT
■ The parameter mode may be one of:

◆ IN -- (the default) specifies the parameter is read-only
◆ OUT -- specifies the parameter is write-only
◆ IN OUT -- specifies the parameter is read-write

■ For example:
PROCEDURE predict_activity

(last_date IN DATE, -- input only
 task_desc IN OUT VARCHAR2, -- input and output
 next_date_out OUT DATE) -- output only

IS ...

11/19/02 31

PL/SQL: Procedures & Functions
■ A parameter for a PL/SQL procedure or function (or any other

PL/SQL variable declaration) can specify a datatype:
◆ A SQL datatype: INTEGER, FLOAT, VARCHAR, etc.
◆ A PL/SQL datatype: BOOLEAN, a record type, etc.
◆ An anchored datatype:

<variable-name> <type-attribute>%TYPE
where <type-attribute> can be any of the following:

✦ A previously declared PL/SQL variable name
✦ A table column in the format "table.column"

For example:
total_sales NUMBER(20,2);
monthly_sales total_sales%TYPE;
comp_id company.company_id%TYPE;

You can also anchor to a NOT NULL datatype
(PL/SQL variables can be declared to be NOT NULL, as well as
columns in tables.) 11/19/02 32

PL/SQL: Procedures & Functions
■ Here's an example of a PL/SQL procedure:

PROCEDURE apply_discount
(company_id_in IN company.company_id%TYPE,
 discount_in IN NUMBER)

IS
min_discount CONSTANT NUMBER := .05;
max_discount CONSTANT NUMBER := .25;
invalid_discount EXCEPTION;

BEGIN
IF discount_in BETWEEN min_discount AND max_discount
THEN

UPDATE item
SET item_amount = item_amount*(1-discount_in)

WHERE EXISTS (SELECT 'x' FROM order
WHERE order.order_id = item.order_id

AND order.company_id = company_id_in);
IF SQL%ROWCOUNT = 0
THEN

RAISE NO_DATA_FOUND;
END IF;

ELSE
RAISE invalid_discount;

END IF;
EXCEPTION

WHEN invalid_discount
THEN DBMS_OUTPUT.PUT_LINE('The specified discount is invalid');
WHEN NO_DATA_FOUND
THEN DBMS_OUTPUT.PUT_LINE('No orders for company: ' ||

TO_CHAR(company_id_in));
END apply_discount;

11/19/02 33

PL/SQL: Procedures & Functions
■ Here's an example of a PL/SQL function:

FUNCTION total_sales
(company_id_in IN company.company_id%TYPE,
 status_in IN order.status_code%TYPE := NULL)

RETURN NUMBER
IS

status_int order.status_code%TYPE := UPPER(status_in);
CURSOR sales_cursor (status_in IN status_code%TYPE) IS

SELECT SUM(amount*discount)
FROM item
WHERE EXISTS (SELECT 'X' FROM order

WHERE order.order_id = item.order_id
AND company_id = company_id_in
AND status_code LIKE status_in);

return_value NUMBER;
BEGIN

OPEN sales_cursor (status_int);
FETCH sales_cursor INTO return_value;
IF sales_cursor%NOTFOUND
THEN

CLOSE sales_cursor;
RETURN NULL;

ELSE
CLOSE sales_cursor;
RETURN return_value;

END IF;
END total_sales;

11/19/02 34

PL/SQL: Packages
■ It is a good idea to organize your PL/SQL procedures and

functions (and other objects) into one or more packages.
■ There are two parts to a package:

◆ The package specification -- the declaration of the
package interface:

PACKAGE <package-name>
IS

[declarations of variables and types]
[specifications of cursors]
[specifications of modules]

END <package-name>;
◆ The package body -- the implementation

PACKAGE BODY <package-name>
IS

[declarations of variables and types]
[specification and SELECT statements of cursors]
[specification and body of modules]

[BEGIN
<executable statements>]

[EXCEPTION
<exception handlers>]

END <package-name>;

11/19/02 35

PL/SQL: Packages
■ A major benefit of packages is that they provide

modularization of your procedures, functions,
cursors, variables, etc.

■ The specification defines the public parts of the
package -- those that are visible to the outside
world.

■ The package body defines the private parts of
the package -- those that are not visible to the
outside world. This allows the implementation to
be private, and perhaps changed over time.

11/19/02 36

PL/SQL: Packages
■ When calling PL/SQL procedures and functions that reside

inside a package:
◆ From inside the same package:

call_me(arg1, arg2);
◆ From outside the package, but from within the same schema

as the stored package:
my_package.call_me(arg1, arg2);

◆ From outside the package, and outside the stored package
schema:
my_schema.my_package.call_me(arg1, arg2);

■ When calling PL/SQL procedures and functions that do not
reside inside a package, omit the package name.

11/19/02 37

PL/SQL: Using SQL*Plus
■ To create a PL/SQL procedure or function from SQL*Plus:

CREATE [OR REPLACE]
PROCEDURE apply_discount
(company_id_in IN company.company_id%TYPE,
 discount_in IN NUMBER)

IS
min_discount CONSTANT NUMBER := .05;
max_discount CONSTANT NUMBER := .25;

BEGIN
...

END apply_discount;
/ <-- Notice the slash!

CREATE [OR REPLACE]
FUNCTION total_sales
(company_id_in IN company.company_id%TYPE,
 status_in IN order.status_code%TYPE := NULL)

RETURN NUMBER
IS
...

END total_sales;
/ <-- Notice the slash!

11/19/02 38

PL/SQL: Using SQL*Plus
■ If you try to create a procedure or function, and there

are errors, you'll see something like:
SQL> CREATE PROCEDURE getCompanyBalance(company_id IN INTEGER)
 2 BEGIN
 3 balance = 345234.89;
 4 END;
 5 /

Warning: Procedure created with compilation errors.

SQL>
■ But you won't see any indication of what the errors

were.
■ You have to ask SQL*Plus for them...

11/19/02 39

PL/SQL: Using SQL*Plus
■ The SHOW ERRORS command will give you more

information:
SQL> show errors
Errors for PROCEDURE GETCOMPANYBALANCE:

LINE/COL ERROR
-------- --

-
2/1 PLS-00103: Encountered the symbol "BEGIN" when expecting one of
 the following:
 ; is with authid deterministic parallel_enable as

■ We left out an IS keyword.
■ However, this is only one error of several, so let's fix it, and

try again...

11/19/02 40

PL/SQL: Using SQL*Plus
■ Try again:

SQL> CREATE PROCEDURE getCompanyBalance(company_id IN INTEGER) IS
 2 BEGIN
 3 balance = 345234.89;
 4 END;
 5 /
CREATE PROCEDURE getCompanyBalance(company_id IN INTEGER) IS
 *
ERROR at line 1:
ORA-00955: name is already used by an existing object

■ Whoops! Even though there were compilation errors, it still
stored the procedure in the database schema.

11/19/02 41

PL/SQL: Using SQL*Plus
■ Try yet again:

SQL> CREATE OR REPLACE
 2 PROCEDURE getCompanyBalance(company_id IN INTEGER) IS
 3 BEGIN
 4 balance = 345234.89;
 5 END;
 6 /

Warning: Procedure created with compilation errors.
■ What's wrong now? Ask SQL*Plus again...

11/19/02 42

PL/SQL: Using SQL*Plus
■ Try SHOW ERRORS again:

SQL> show errors
Errors for PROCEDURE GETCOMPANYBALANCE:

LINE/COL ERROR
-------- ---
3/10 PLS-00103: Encountered the symbol "=" when expecting one of the
 following:
 := . (@ % ;
 The symbol ":= was inserted before "=" to continue.

■ OK, let's fix the := problem, and try again...

11/19/02 43

PL/SQL: Using SQL*Plus
■ Try again:

SQL> CREATE OR REPLACE
 2 PROCEDURE getCompanyBalance(company_id IN INTEGER) IS
 3 BEGIN
 4 balance := 345234.89;
 5 END;
 6 /

Warning: Procedure created with compilation errors.
■ What's wrong now? Let's try that SHOW ERRORS again...

11/19/02 44

PL/SQL: Using SQL*Plus
■ Try SHOW ERRORS again:

SQL> show errors
Errors for PROCEDURE GETCOMPANYBALANCE:

LINE/COL ERROR
-------- ---
3/2 PLS-00201: identifier 'BALANCE' must be declared
3/2 PL/SQL: Statement ignored

■ OK, let's fix that, and hope it's the last one...

11/19/02 45

PL/SQL: Using SQL*Plus
■ Try again:

SQL> CREATE OR REPLACE
 2 PROCEDURE getCompanyBalance(company_id IN INTEGER) IS
 3 balance REAL;
 4 BEGIN
 5 balance := 345234.89;
 6 END;
 7 /

Procedure created.

■ Yeah!

11/19/02 46

PL/SQL: Using SQL*Plus
■ Of course, we forgot that, if we want to create a procedure

to return a value, it can't be a procedure, but must be a
function. So let's change it:
SQL> CREATE OR REPLACE
 2 FUNCTION getCompanyBalance(company_id IN INTEGER)
 3 RETURN REAL
 4 IS
 5 balance REAL;
 6 BEGIN
 7 balance := 345234.89;
 8 RETURN balance;
 9 END;
 10 /
CREATE OR REPLACE
*
ERROR at line 1:
ORA-00955: name is already used by an existing object

■ Rats!!!!

11/19/02 47

PL/SQL: Using SQL*Plus
■ We must first drop the procedure, before we can create a

function of the same name:
SQL> DROP PROCEDURE getCompanyBalance;

Procedure dropped.

SQL> CREATE OR REPLACE
 2 FUNCTION getCompanyBalance(company_id IN INTEGER)
 3 RETURN REAL
 4 IS
 5 balance REAL;
 6 BEGIN
 7 balance := 345234.89;
 8 RETURN balance;
 9 END;
 10 /

Function created.

■ Eureka!

11/19/02 48

PL/SQL: Using SQL*Plus
■ What if we want to interact with the procedure or

function from within SQL*Plus?
■ There is a special PL/SQL package, DBMS_OUTPUT.

 It contains the following procedures:
◆ PUT(a VARCHAR2)
◆ PUT(a NUMBER)
◆ PUT(a DATE)
◆ PUT_LINE(a VARCHAR2)
◆ PUT_LINE(a NUMBER)
◆ PUT_LINE(a DATE)
◆ NEW_LINE
◆ and a number of others

■ They allow the PL/SQL procedure or function to
communicate with the client.

11/19/02 49

PL/SQL: Using SQL*Plus
■ Let's try it:

SQL> CREATE OR REPLACE
 2 PROCEDURE helloWorld
 3 IS
 4 BEGIN
 5 DBMS_OUTPUT.PUT_LINE('Hello, PL/SQL world!');
 6 END;
 7 /

Procedure created.

SQL> execute helloWorld;

PL/SQL procedure successfully completed.

■ So why didn't we get any output?

11/19/02 50

PL/SQL: Using SQL*Plus
■ It turns out you need to tell SQL*Plus to

take notice of the server output:
SQL> set serveroutput on
SQL> execute helloWorld;
Hello, PL/SQL world!

PL/SQL procedure successfully completed.

■ Finally!

11/19/02 51

PL/SQL: Using SQL*Plus
■ What if you have created your PL/SQL object in the

schema, but you don't have its source handy?
■ No problem; you can query the database to get the

source:
SQL> SELECT TEXT
 2 FROM USER_SOURCE
 3 WHERE name = 'HELLOWORLD'
 4 AND type = 'PROCEDURE'
 5 ORDER BY LINE;

TEXT
--
PROCEDURE helloWorld
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello, PL/SQL world!');
END;

11/19/02 52

PL/SQL: Privileges Required
■ In order to create a procedural object, you must have the

CREATE PROCEDURE system privilege (which is part of
the RESOURCE role)

■ If the procedural object will be placed in another user's
schema, then you must have CREATE ANY PROCEDURE
privilege

■ To allow another user to execute your procedural object,
that user must be granted EXECUTE privilege on the
object:
GRANT EXECUTE ON my_procedure TO bryan;

■ Bryan will then be able to execute that procedure, even if
he does not have privileges on any of the tables which
the procedure uses.

