
www.nyoug.org 212-978-8890 1

Inner, Outer, Full? Oracle9i Join syntax
John King, King Training Resources

Introduction
Joining data together is one of the most significant strengths of a relational database. Oracle was the first commercially
available database to support the outer-join construct. The more-recent ISO/ANSI standard includes join semantics that
are more comprehensive than those supported by Oracle8i or earlier releases. Oracle9i supports the “new” join including
Inner Join as well as Left, Right, and Full Outer Join capability. Until now, the only way to accomplish a Full join (values
missing on both sides of a query) was to use UNION. Furthermore, the “new” Join syntax allows the separation of Join
criteria from WHERE selection criteria sometimes simplifying code. The use of the ISO/ANSI join syntax means that
Oracle SQL will be more easily ported to/from other environments and will fit in more easily with SQL statement
generators. In this paper, the “new” syntax will be explained and demonstrated so that developers may improve SQL
statement effectiveness.

Understanding Joins
Joins allow database users to combine data from one table with data from one or more other tables (or views, or
synonyms). Tables are "joined" two at a time making a new table containing all possible combinations of rows from the
original two tables (sometimes called a “full join” or “cartesian product”).

A “join condition” is usually used to limit the combinations of table data to just those rows containing columns that match
columns in the other table. Most joins are “equi-joins” where the data from a column in one table exactly matches data in
the column of another table. It is also possible (though usually less efficient) to join using ranges of values or other
comparisons between the tables involved. A table may be “joined” to another table, tables, or itself!

It is important to understand that whenever two or more tables/views/synonyms are listed in a FROM clause a join results.
Join conditions serve the purpose of limiting the number of rows returned by the join.

The absence of a join condition results in all possible combinations of rows from the involved tables which is usually not
useful information.

Original Join Syntax
The original join semantics in SQL were to include two (or more) table/view/synonym names in a FROM clause and to
use the WHERE clause to describe the join condition. This results in combining row selection criteria with join conditions
in the WHERE clause sometimes causing confusion for those reading/maintaining/tuning the code.

 select distinct nvl(dname,'No Dept'),count(empno) nbr_emps
 from many_emps emp,many_depts dept
 where emp.deptno = dept.deptno
 and emp.sal between 2000 and 3000
 and emp.job = 'SALESMAN'
 group by dname;

New Join Syntax
The ISO/ANSI Join syntax has been used for several years in some non-Oracle SQL environments. Since Oracle had
invented the original Outer-join syntax they were slow to accept the new style. The significant advantage of the ISO/ANSI
Join syntax is that it is supported by third party SQL tools. Using the ISO/ANSI syntax also makes it easier to move code
to a non-Oracle platform if desired.

www.nyoug.org 212-978-8890 2

Perhaps the single most advantageous feature of the new semantics is the separation of join criteria from other row
selection criteria. When using the new syntax, join criteria is added to the FROM clause using an IN or USING clause that
is clearly meant for the previous pair of tables/views/synonyms.

Cross Join/Natural Join
Cross Join indicates a join of the same type as when comma-delimited, requiring specification of join conditions in the
WHERE clause:

select ename,dname
 from emp cross join dept
 where emp.deptno = dept.deptno

Natural joins indicate an equi-join where the database automatically chooses join criteria using any column names that
happen to match between the two tables. Natural joins may also specify ISO/ANSI join types (INNER, LEFT, RIGHT,
FULL; discussed later…). Additional criteria may be specified using the WHERE clause.

select ename,dname
 from emp natural join dept

LOB columns may not be selected when using NATURAL JOIN.

Inner/Outer Join
Traditional Inner Joins look for rows that match rows in the other table(s). Depending upon the data involved, it is also
possible that a user might be interested in rows that DO NOT match rows in the other table(s). Finding rows without
matches is often referred to as Outer Join (sometimes Anti-Join). The next section deals specifically with Outer Join
criteria.

The older syntax names all tables in comma-delimited form and uses the WHERE clause to name Join criteria, note that in
the example below Join criteria is mixed with row selection criteria.

select distinct nvl(dname,'No Dept'),count(empno) nbr_emps
 from many_emps emp,many_depts dept
 where emp.deptno = dept.deptno
 and emp.job in ('MANAGER','SALESMAN','ANALYST')
 group by dname;

To use ISO/ANSI Inner Join semantics, use the term INNER JOIN (or simply JOIN) between the table(s) involved and
specify one-or-more Join criteria with the ON/USING clause. Correlation (alias) table names may be specified in the same
manner as with comma-delimited joins. With the new syntax the WHERE clause names only non-Join criteria.

select distinct nvl(dname,'No Dept'),count(empno) nbr_emps
 from many_emps emp join many_depts dept
 on emp.deptno = dept.deptno
 where emp.job in ('MANAGER','SALESMAN','ANALYST')
 group by dname;

The new Join semantics allow the use of parentheses to control the order in which joins occur.

www.nyoug.org 212-978-8890 3

Left/Right Outer Join
A problem with inner join (old or new syntax) is that only rows that match between tables are returned. Oracle invented
the first syntax for solving the outer Join issue years ago. This is the “(+)” notation used on side of the Join criteria
WHERE clause where null rows are to be created to match the other table. The two queries below illustrate the problem:

SQL> select distinct deptno from many_emps;

 DEPTNO

 10
 20
 30
 40
 60
 70
 80

SQL> select distinct deptno from many_depts;

 DEPTNO

 10
 20
 30
 40
 50
 51

Note that the two queries above show that rows exist in each table that are not matched by the other table. (Clearly, the
database above has some problems and needs referential integrity added soon!) A request to list each department name
and the number of employees assigned to the department would yield numbers for departments 10, 20, 30, and 40 only.
With Oracle’s Outer Join operator the query can be caused to create null MANY_EMPS rows to match rows in the
MANY_DEPTS table. The Oracle Outer Join operator “(+)” tells SQL which table to generate null rows for.

select distinct nvl(dname,'No Dept'),count(empno) nbr_emps
 from many_emps emp,many_depts dept
 where emp.deptno(+) = dept.deptno
 group by dname;

The new ISO/ANSI Join syntax provides three separate capabilities: LEFT, RIGHT, and FULL OUTER JOIN (the word
OUTER is redundant and usually omitted). With the new syntax, LEFT and RIGHT indicate which side of the join
represents the complete set, the opposite side is where null rows will be created. The example below solves the same
problem as the Oracle Outer Join operator example above:

select distinct nvl(dname,'No Dept'),count(empno) nbr_emps
 from many_emps emp right join many_depts dept
 on emp.deptno = dept.deptno
 group by dname;

Again, RIGHT JOIN in the example above indicates that MANY_DEPTS is the complete set and that null rows are to be
temporarily created for MANY_EMPS to match. To create null MANY_DEPT rows to match departments in the
MANY_EMP table LEFT JOIN would be used.
Unfortunately, neither the Oracle Outer Join operator nor the new LEFT/RIGHT Outer Join semantics solve the problem
highlighted earlier of rows in both tables that do match the opposite table.

Departments 50 and 51 are not matched by MANY_EMPS table rows

Departments 60, 70, and 80 are not matched by ANY_DEPTS table rows

www.nyoug.org 212-978-8890 4

Full Outer Join
To cause SQL to generate rows on both sides of the join required a UNION using the old Oracle Outer Join operator
syntax as illustrated below:

select nvl(dname,'No Dept') deptname,count(empno) nbr_emps
 from many_emps emp,many_depts dept
 where emp.deptno(+) = dept.deptno
 group by dname
union
select nvl(dname,'No Dept') deptname,count(empno) nbr_emps
 from many_emps emp,many_depts dept
 where emp.deptno = dept.deptno(+)
 group by dname;

The solution using UNION works fine, unfortunately, it does not conform to the ISO/ANSI standard. Using UNION also
means the SQL developers must be sure that the queries involved match properly.
The new ISO/ANSI Outer Join mechanism is simpler to code. To cause rows to be created on either side of a Join as
required to align the two tables use the FULL OUTER JOIN (FULL JOIN) syntax.

select distinct nvl(dname,'No Dept') deptname,count(empno) nbr_emps
 from many_emps emp full join many_depts dept
 on emp.deptno = dept.deptno
 group by dname;

Result of Full Outer Join

DEPTNAME NBR_EMPS
-------------- ----------
ACCOUNTING 12503
Join Testing 0
Join Testing 2 0
No Dept 14
OPERATIONS 12499
RESEARCH 12505
SALES 12506

Issues and Recommendations
Oracle recommends that you use the new ISO/ANSI Outer Join semantics instead of the Oracle Outer Join operator.
Queries using the Oracle Outer Join operator must conform to restrictions that do not apply to the new ISO/ANSI
semantics including:
Queries using the Oracle Outer Join operator “(+)” are subject to the following rules and restrictions, which do not apply
to the ANSI syntax:

1. Queries may not mix the Oracle Outer Join operator with the new ISO/ANSI semantics

2. If multiple join conditions are present the Oracle Outer Join operator must be specified for every condition

3. The Oracle Outer Join operator may be applied only to a column, not to an expression

4. The Oracle Outer Join operator may not be combined with another condition using the OR operator

5. The Oracle Outer Join operator may not be used wityh an IN condition

6. The Oracle Outer Join operator may only be used for one table in a query

www.nyoug.org 212-978-8890 5

Performance and Known Problem
In the both Oracle9i implementations (version 9.0 and 9.2) it appears that Oracle Inner Joins behave differently using the
older comma-delimited syntax than when using the new ISO/ANSI syntax. In at least some cases, the new syntax creates a
different plan and sometimes does not perform as well as the earlier methods. When large quantities of data are involved
you should test both methods to make sure that one method does not have a distinct advantage/disadvantage over the
other.

• In at least on other vendor’s implementations (IBM’s DB2/UDB), the ISO/ANSI join semantics have been improved

over time such that they out-perform the older comma-delimited style.
• Right/Left Outer Joins (in both versions 9.0 and 9.2) on the other hand appear to use exactly the same execution plan

for queries using either the older Oracle Outer Join operator or the new Outer Join semantics. Therefore, there should
be no performance difference. (Though testing is ALWAYS a good idea…)

• Full Outer Join in version 9.0 appears to generate the same plan as when using the Outer Join Operator and a Union,
however, version 9.2 Full Outer Join plans seem to show different and improved plans.

• In the first release of 9i (version 9.0) there seems to be a bug in the implementation of FULL JOIN. In many cases
Oracle generates an error when a View is named rather than a Table. Views seem to work fine with LEFT and RIGHT
OUTER JOIN semantics, just not with FULL JOIN. This problem was solved in Oracle 9.2.

• In the first release of 9i (version 9.0) there was a significant security bug when using the new Join syntax allowing
access to any table in the database regardless of schema and user permissions! A patch is available for all but
Windows environments. This bug has been fixed in Oracle 9.2.

Conclusion
In today’s increasingly standardized programming world using ISO/ANSI-standard syntax rather than vendor-specific
code makes a tremendous amount of good sense. In addition the number of programming, code-generation, development,
documentation, and code review tools that recognize the new syntax is growing. For maintainability and portability
purposes it is probably a good idea to adopt the new syntax as soon as possible.

In the case of Outer Joins the choice of the new syntax is made easier since performance does not suffer and with 9.2
seems to improve when using Full Outer Join. You should certainly test in your own environment to be sure you have not
introduced a problem.

The simpler syntax of the new semantics especially with FULL JOIN is probably worth adopting the new style alone.
Oracle’s recommendation to use the new syntax hints that the older Outer Join operator may some day appear on the list
of deprecated features in a future release.

In the case of Inner Joins, the performance issues cannot be ignored by many larger installations. YOUR MILEAGE
MAY VARY. There is no substitute for testing specific queries with both methods to decide if one is clearly superior.

About the Author
John founded King Training Resources in 1988, he has been working with Oracle products since Oracle Version 4 and has
been teaching Oracle-related courses since 1986. He has presented papers at various user group conferences including:
IOUG-A Live!, EOUG, UKOUG, ODTUG, SEOUC, MAOP, and the RMOUG Training Days.

This paper, the presentation slides, and sample SQL may be downloaded from http://www.kingtraining.com.

References
1. Oracle SQL Reference

