
Improving SQL efficiency using CASE

Some time ago I wrote ‘The Power of Decode’ - a paper on using the DECODE function to
improve report performance. I was aware at the time that DECODE was being replaced by CASE
but wanted to make sure that the paper applied to as many Oracle versions as possible. CASE
was introduced in Oracle 8.1.6, however, and is a much better option because it is

1) More flexible than DECODE
2) Easier to read
3) ANSI-compatible (if that matters to you)

However, CASE is essentially a better implementation of DECODE so the reasons for using
either are similar. In this article I’ll focus on improving application performance by improving the
efficiency of your code. One of the first and most valuable lessons I learnt about Oracle
performance is to do as much work in as few steps as possible. The Oracle server engine is
designed to handle large data sets efficiently but sometimes developers try to break them up into
smaller discrete pieces of work (the row-by-row approach). I suspect that they feel they have
more control this way and it maps on to a typical developer’s procedural approach, but it normally
isn’t the most efficient way of accessing an Oracle database.

I often see reports developed using reporting tools or by embedding SQL in other languages, that
include several SQL statements accessing the same tables in slightly different ways to retrieve
individual pieces of data in the report layout. Each of the individual SQL statements is a separate
request to the database and causes work at the server end.

To give you a trivial example, why do this?

SELECT deptno, SUM(sal) FROM emp WHERE deptno = 10
GROUP BY deptno;

SELECT deptno, SUM(sal) FROM emp WHERE deptno = 20
GROUP BY deptno;

When you could retrieve the same results using this.

SELECT deptno, SUM(sal) FROM emp WHERE deptno IN (10,20)
GROUP BY deptno;

Any technique that offers the possibility of using fewer SQL statements to achieve the same end
result may have a beneficial effect on performance. Analytic functions can be a big help in this
area but CASE and DECODE have their place too.

Definition
The first thing to note is that CASE expressions are defined in the Expressions chapter of the
Oracle SQL Language Reference Manual. This offers our first hint of the power of CASE,
because it indicates that we can use it wherever we might use any other expression, in the
SELECT, WHERE or ORDER BY clauses for example.

I like Oracle’s high level description of CASE which sums up what we’re going to use it for.

“CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without
having to invoke procedures.”

Note that there’s no need to use a procedural language – it’s all available in a single SQL
statement. Here are the formal definitions of the two variants

http://doug.burns.tripod.com/decode.html
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10759/expressions004.htm
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10759/expressions004.htm

Simple CASE Expression

 CASE expr WHEN comparison_expr_1 THEN return_expr_1

[WHEN comparison_expr_2 THEN return_expr_2 ….]
[ELSE default] END

Where: -

Expr is a valid expression that is evaluated once.

Comparison_Expr_(1-n) are compared to the Condition

Return_expr_(1-n) are the results returned if the matching Expr = Condition

default is the value returned if none of the Comparison_Exprs = Expr. If no value is specified for
default and none of the Comparison_Exprs = Expr, then CASE will return NULL.

Searched CASE Expression

 CASE WHEN condition_1 THEN return_expr_1

[WHEN condition_2 THEN return_expr_2 ….]
[WHEN condition_n THEN return_expr_n ….]
 [ELSE default] END

Where: -

Condition_(1-n) are valid expressions that could be evaluated to TRUE (e.g. amount_sold >
1000; cust_last_name = ‘BURNS’; a.amount_sold / a.unit_price > b.amount_sold / b.unit_price)

Return_expr_(1-n) are the results returned if the matching condition was true.

default is the result returned if none of the WHEN conditions evaluates to TRUE. If no value is
specified for default and none of the WHEN conditions are TRUE, then CASE will return NULL.

So Oracle will evaluate each condition and as soon as one of them is TRUE, it will return the
related expression that follows the THEN keyword and then exit the CASE structure. The
difference between the Searched Case and Simple Case is that the latter compares a single
expression against possible results, whereas the Searched Case expression allows us to test
multiple conditions which may not be related.

All of which is a slightly long-winded way of describing a very simple principle. Those of you with
previous programming experience in other languages may find it simpler to understand a
DECODE expression as a variation on an ‘if … then … elseif …’ type of structure. (It’s the
Searched Case Expression variant I’m using here)

if (condition1)
 return(result1);

elseif (condition2)
 return(result2);
…

elseif (conditionn)
 return(resultn);
else

return(default);

To finish off the definition of CASE expressions there are some important data type rules
highlighted in this section of the documentation

“For a simple CASE expression, the expr and all comparison_exprs must either have the
same datatype (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER,
BINARY_FLOAT, or BINARY_DOUBLE) or must all have a numeric datatype. If all
expressions have a numeric datatype, then Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype.

For both simple and searched CASE expressions, all of the return_exprs must either
have the same datatype (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER,
BINARY_FLOAT, or BINARY_DOUBLE) or must all have a numeric datatype. If all return
expressions have a numeric datatype, then Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype.”

Basic Usage

Okay, that’s the boring bit out of the way and it’s time to turn to the first example. All of the
examples included are designed to work against the sample SH (sales history) schema that has
been available since Oracle 9i. I selected this because

It contains a reasonable volume of data, including the 900,000+ row SALES table.
I think it’s a fair reflection of a business application.
It has a standard published definition and sensible table and column names. Full
documentation for the schema is available in the Sample Schemas manual in the generic
documentation set. This means that you can create the same schema (if it’s not already
loaded into your database), test the examples and play around with different approaches.

I ran the examples against Oracle 10.1.0.4.0, but you should find identical results on any version
of 9i or 10g. (I’d be extremely interested in any variations you might come across.) I’ve used the
cost-based optimiser and the execution plans are generated using the SQL*Plus Autotrace
facility.

Example 1 illustrates the way in which DECODE was often used to improve report formatting.

Example 1

SELECT cust_id, cust_first_name, cust_last_name,

CASE cust_gender
WHEN 'M' THEN 'Male'
WHEN 'F' THEN 'Female'

ELSE 'UNKNOWN'
END gender

FROM customers
WHERE ROWNUM < 6;

 CUST_ID CUST_FIRST_NAME CUST_LAST_NAME GENDER
---------- -------------------- -- ------
 49671 Abigail Ruddy Male
 3228 Abigail Ruddy Male
 6783 Abigail Ruddy Male
 10338 Abigail Ruddy Male
 13894 Abigail Ruddy Male

http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10771/toc.htm

This statement checks the cust_gender column of the customers table and if the value = ‘M’, then
it returns 'Male' or if it's ‘F’ it returns ‘Female’. I’ve included a default clause that displays
‘UNKNOWN’ if it’s not one of the two expected values.

The ROWNUM test limits the output for the example because there are 55,500 customers! That’s
one aspect of the new sample schemas that can make them harder to work with than the old
EMP and DEPT – sometimes you only want a small output example.

Although translating code values into readable descriptions in reporting applications is the most
common and obvious use of DECODE (particularly given the name of the function) and CASE, it
masks some of the more powerful general functionality which I’ll turn to next.

Logic-dependent Aggregation

Imagine a situation where the Sales Manager requests a report to examine the effect on 2001
(calendar year) revenue of applying a 10% mark-up on Photo-related products. The report needs
to give the total revenue for each product category and subcategory. This entails calculating the
total of the sales.amount_sold column for all products, which is straightforward using GROUP BY
and SUM as shown in Example 2a.

Example 2a

REM First a few SQL*Plus formatting commands

SET PAGES 999
SET LINES 160
COLUMN prod_category FORMAT A30
COLUMN prod_subcategory FORMAT A26
COLUMN dollars FORMAT 999,999,990.90

BREAK ON prod_category SKIP 1

COMPUTE SUM OF dollars ON prod_category

REM Now the query

SELECT p.prod_category, p.prod_subcategory, sum(s.amount_sold) AS dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY p.prod_category, p.prod_subcategory;

PROD_CATEGORY PROD_SUBCATEGORY DOLLARS
------------------------------ -------------------------- ---------------
Electronics Game Consoles 1,205,027.35
 Home Audio 2,779,398.57
 Y Box Accessories 161,004.00
 Y Box Games 559,421.03
****************************** ---------------
sum 4,704,850.95

Hardware Desktop PCs 2,230,713.39
 Portable PCs 3,453,656.62
****************************** ---------------
sum 5,684,370.01

Peripherals and Accessories Accessories 663,034.82

 CD-ROM 669,134.90
 Memory 1,228,555.41
 Modems/Fax 874,702.07
 Monitors 3,191,525.93
 Printer Supplies 1,232,754.58
****************************** ---------------
sum 7,859,707.71

Photo Camcorders 2,819,074.98
 Camera Batteries 757,626.90
 Camera Media 551,090.37
 Cameras 2,205,836.66
****************************** ---------------
sum 6,333,628.91

Software/Other Accessories 521,342.80
 Bulk Pack Diskettes 88,216.04
 Documentation 827,932.29
 Operating Systems 1,020,370.87
 Recordable CDs 367,478.04
 Recordable DVD Discs 728,564.36
****************************** ---------------
sum 3,553,904.40

22 rows selected.

Returning a different value for Photo products adds a little complication. There are several
possible solutions. We could use two different copies of the sales table in the FROM clause, or
we could use a UNION of two complementary data sets, Photo and non-Photo products, as
shown in Example 2b.

(Note - at this stage, I’ll enable the SQL*Plus AUTOTRACE facility to expose the execution plans
of the various approaches to the problem. If you haven’t used this before, you can find more
information HERE)

Example 2b

SELECT p.prod_category, p.prod_subcategory,

SUM(s.amount_sold) * 1.1 AS dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
AND p.prod_category = 'Photo'
GROUP BY p.prod_category, p.prod_subcategory
UNION ALL
SELECT p.prod_category, p.prod_subcategory, sum(s.amount_sold) AS dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
AND p.prod_category != 'Photo'
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY 1, 2;

PROD_CATEGORY PROD_SUBCATEGORY DOLLARS
------------------------------ -------------------------- ---------------
Electronics Game Consoles 1,205,027.35
 Home Audio 2,779,398.57
 Y Box Accessories 161,004.00
 Y Box Games 559,421.03

http://download-west.oracle.com/docs/cd/B14117_01/server.101/b12170/ch9.htm

****************************** ---------------
sum 4,704,850.95

Hardware Desktop PCs 2,230,713.39
 Portable PCs 3,453,656.62
****************************** ---------------
sum 5,684,370.01

Peripherals and Accessories Accessories 663,034.82
 CD-ROM 669,134.90
 Memory 1,228,555.41
 Modems/Fax 874,702.07
 Monitors 3,191,525.93
 Printer Supplies 1,232,754.58
****************************** ---------------
sum 7,859,707.71

Photo Camcorders 3,100,982.48
 Camera Batteries 833,389.59
 Camera Media 606,199.41
 Cameras 2,426,420.33
****************************** ---------------
sum 6,966,991.80

Software/Other Accessories 521,342.80
 Bulk Pack Diskettes 88,216.04
 Documentation 827,932.29
 Operating Systems 1,020,370.87
 Recordable CDs 367,478.04
 Recordable DVD Discs 728,564.36
****************************** ---------------
sum 3,553,904.40

22 rows selected.

Although this statement will produce the desired results it will perform two full table scans against
the sales table to return the complementary data sets which are then UNIONed. (Note that I’ve
used UNION ALL because we know that the two data sets are already complementary.) So the
output shown in bold text comes from the first query block, before the UNION ALL, and the rest
comes from the second query block.

The execution plan generated by Oracle for this query is as follows

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=879 Card=18 Bytes=1152)

 1 0 SORT (ORDER BY) (Cost=878 Card=18 Bytes=1152)
 2 1 UNION-ALL
 3 2 SORT (GROUP BY) (Cost=433 Card=3 Bytes=192)
 4 3 HASH JOIN (Cost=429 Card=45967 Bytes=2941888)
 5 4 TABLE ACCESS (FULL) OF 'TIMES' (TABLE) (Cost=15 Card=365
 Bytes=4380)
 6 4 HASH JOIN (Cost=412 Card=183769 Bytes=9555988)
 7 6 TABLE ACCESS (BY INDEX ROWID) OF 'PRODUCTS' (TABLE)
 (Cost=3 Card=14 Bytes=490)
 8 7 INDEX (RANGE SCAN) OF 'PRODUCTS_PROD_CAT_IX' (INDEX)
 (Cost=1 Card=14)

 9 6 PARTITION RANGE (ITERATOR) (Cost=400 Card=918843
 Bytes=15620331)

 10 9 TABLE ACCESS (FULL) OF 'SALES' (TABLE) (Cost=400
 Card=918843 Bytes=15620331)
 11 2 SORT (GROUP BY) (Cost=444 Card=15 Bytes=960)
 12 11 HASH JOIN (Cost=430 Card=183869 Bytes=11767616)
 13 12 TABLE ACCESS (FULL) OF 'PRODUCTS' (TABLE) (Cost=3 Card=58
 Bytes=2030)
 14 12 HASH JOIN (Cost=424 Card=229837 Bytes=6665273)
 15 14 TABLE ACCESS (FULL) OF 'TIMES' (TABLE) (Cost=15 Card=365
 Bytes=4380)
 16 14 PARTITION RANGE (ITERATOR) (Cost=400 Card=918843
 Bytes=15620331)
 17 16 TABLE ACCESS (FULL) OF 'SALES' (TABLE) (Cost=400
 Card=918843 Bytes=15620331)
Statistics
--
 14 recursive calls
 0 db block gets
 1173 consistent gets
 0 physical reads
 0 redo size
 1306 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 5 sorts (memory)
 0 sorts (disk)
 22 rows processed

An Interlude

As this is the first execution plan we’ve come across, it’s worth a brief interlude to examine it in a
little more detail. I’ll use the step numbers in the first column for reference.

The first important point is that the cost based optimizer chose different plans for the two different
result sets which are UNIONed. That’s because, although they look very similar, they are
interested in different volumes of data, so different access paths are appropriate.

First Query Block (for Photo sales)

a) Steps 8 and 7 retrieve the rows for Photo products from PRODUCTS, using an index
range scan. PRODUCTS_PROD_CAT_IX is a non-unique index on the
PROD_CATEGORY column. Because Photo products are a small subset of
PRODUCTS, Oracle has decided that an indexed retrieval is most efficient.

b) Steps 10, 9 and 6 retrieve the related rows from the partitioned SALES table using a

Hash Join against a full table scan of SALES.

c) Steps 5 and 4 retrieve all the related rows from the TIMES table using a Hash Join

d) Step 3 groups the resulting set of data from PRODUCTS, SALES and TIMES for Photo
products.

Second Query Block (for non-Photo sales)

e) Step 15 retrieves all of the rows for calendar year 2001 from the TIMES table using a full
table scan.

f) Steps 14, 16 and 17 retrieve all of the related rows from the partitioned SALES table

using a full table scan and a Hash Join.

g) Steps 13 and 12 retrieve all of the rows from the PRODUCTS table (eliminating Photo
products) and then use a Hash Join to join the results to the last rowset. Note that,
because we need to retrieve nearly all of the rows from the products table, it’s more
efficient for Oracle to use a full table scan this time.

h) Step 11 groups the resulting set of data from PRODUCTS, SALES and TIMES for Photo

products.

UNION and ORDER BY

i) Step 2 performs a UNION ALL operation on the results from d) and h) above

j) Step 1 performs the final sort of the aggregated results, so that they’re ORDERed BY
PROD_CATEGORY then PROD_SUBCATEGORY

I like the autotrace facility because it allows me to run the query, see the results, the execution
plan and some basic resource usage statistics. However when it comes to reading the execution
plan, a nicer facility is probably the DBMS_XPLAN package, so I suggest you read the
documentation and try that too.

Interlude over - let’s get back to tuning the query.

The only reason that we require two scans of sales is to return all the non-Photo products and
their amount_sold in one data set, using SUM(amount_sold); and to return another data set
containing the Photo products, using SUM(amount_sold) * 1.1 to calculate the total amount_sold.
The two sets are then UNIONed.

We can optimise this query by retrieving all of the amount_sold values in one scan of the sales
table and then using CASE to selectively apply a calculation to the results for the Photo products
in the SELECT list, as shown in example 2c.

Example 2c

SELECT p.prod_category, p.prod_subcategory,

SUM(CASE p.prod_category
 WHEN 'Photo' THEN amount_sold *1.1
 ELSE amount_sold
 END) AS dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY 1, 2;

PROD_CATEGORY PROD_SUBCATEGORY DOLLARS
------------------------------ -------------------------- ---------------
Electronics Game Consoles 1,205,027.35
 Home Audio 2,779,398.57
 Y Box Accessories 161,004.00
 Y Box Games 559,421.03
****************************** ---------------
sum 4,704,850.95

Hardware Desktop PCs 2,230,713.39
 Portable PCs 3,453,656.62
****************************** ---------------
sum 5,684,370.01

http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10752/ex_plan.htm
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10752/ex_plan.htm

Peripherals and Accessories Accessories 663,034.82
 CD-ROM 669,134.90
 Memory 1,228,555.41
 Modems/Fax 874,702.07
 Monitors 3,191,525.93
 Printer Supplies 1,232,754.58
****************************** ---------------
sum 7,859,707.71

Photo Camcorders 3,100,982.48
 Camera Batteries 833,389.59
 Camera Media 606,199.41
 Cameras 2,426,420.33
****************************** ---------------
sum 6,966,991.80

Software/Other Accessories 521,342.80
 Bulk Pack Diskettes 88,216.04
 Documentation 827,932.29
 Operating Systems 1,020,370.87
 Recordable CDs 367,478.04
 Recordable DVD Discs 728,564.36
****************************** ---------------
sum 3,553,904.40

22 rows selected.

Although the results are identical and the two statements are functionally equivalent, it is clear
from the execution plan that this will require only one full scan of the sales table, which represents
a useful improvement.

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=448 Card=75 Bytes=4800)

 1 0 SORT (GROUP BY) (Cost=448 Card=75 Bytes=4800)
 2 1 HASH JOIN (Cost=430 Card=229837 Bytes=14709568)
 3 2 TABLE ACCESS (FULL) OF 'PRODUCTS' (TABLE) (Cost=3 Card=72

Bytes=2520)
 4 2 HASH JOIN (Cost=424 Card=229837 Bytes=6665273)
 5 4 TABLE ACCESS (FULL) OF 'TIMES' (TABLE) (Cost=15 Card=365

Bytes=4380)
 6 4 PARTITION RANGE (ITERATOR) (Cost=400 Card=918843

Bytes=15620331)
 7 6 TABLE ACCESS (FULL) OF 'SALES' (TABLE) (Cost=400

Card=918843 Bytes=15620331)
Statistics
--
 8 recursive calls
 0 db block gets
 587 consistent gets
 0 physical reads
 0 redo size
 1306 bytes sent via SQL*Net to client
 519 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)
 22 rows processed

Example 2c requires half the number of consistent gets and less than half the number of sorts
that example 2b does. However, you’ll probably notice that if you run this in a single user test
environment that, because we’re operating on fairly small volumes of data, the time to complete
the requests and return the data is very similar – around 1 second in my tests. Which is why
generating the execution plans and resource usage statistics is important. If you had many users
running this report against larger data sets, the difference would become more noticeable.

So let's look at what we've changed. We'll leave the SELECT clause until last (because that is
where the most significant changes are) and exclude the more straightforward parts of the
statement first.

We still need to select FROM the same three tables and to GROUP BY product_category and
product_subcategory, so no change in those two parts of the statement. We know we're
interested in all products so let's eliminate the product_category check from the two different
WHERE clauses in example 2b which leaves us with two identical WHERE clauses which
facilitate the joins between the sales, times and product tables and limit the data to the calendar
year 2001. Now that the two WHERE clauses are identical they return the same rows so we can
reduce everything to one data set, with no need for the UNION any more. In fact, the query is
starting to look like example 2a.

FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY p.prod_category, p.prod_subcategory;

This leaves us with our new SELECT clause to look at. The first two grouping columns remain the
same - product_category and product_subcategory from the products table. The third column
specification contains some of the logic which we've moved from the WHERE clauses of the
UNION. It uses the SUM() function to generate a total amount_sold for all the products in the
product_category and product_subcategory but uses different values for amount_sold, depending
on whether the category is ‘Photo’ or not. So here is a high-level procedural view of how example
2c works.

 FOR EACH product subcategory (GROUP BY prod_category, prod_subcategory)
 Generate the total amount_sold for that product subcategory (SUM)
 IF the related product_category is 'Photo', THEN
 Use amount_sold * 1.1
 ELSE (by default)
 Use amount_sold
 END IF

Pivot Tables and Multi-part Logic

A common use of CASE is to generate pivot tables or cross-matrix reports (although the new
MODEL clause in 10g is more powerful). We might want to modify our previous report to just
display sales information for Photo Products but to have one column per month for the last
quarter of 2001.

To achieve this, we’ll select the usual product and sales data, group on the product category and
sub-category and apply the 10% mark-up to Photo products. However, we’ll also check which
month the sale occurred in before adding the amount sold to a given column, one for each month.
It’s important to remember here that if there is no ELSE clause and none of the conditions is
TRUE, the default value of NULL will be returned, so the running SUM for that month will be

http://searchsqlserver.techtarget.com/sDefinition/0,,sid87_gci875976,00.html

unaffected. That’s the approach I’ve used here and the behaviour has been consistent over
multiple versions of Oracle, but if you’re cautious, you can simply add ELSE 0 or ELSE NULL to
each CASE expression.

Example 3a

(Note that this is the first example to use a Searched CASE expression where we have a number
of WHEN clauses containing discrete logical tests, rather than comparing each to the same initial
test expression. This can be clearly identified because the first WHEN keyword appears
immediately after the CASE keyword.)

SET LINES 80
COLUMN prod_category FORMAT A16
COLUMN prod_subcategory FORMAT A20
COLUMN oct_dollars format 999,990.90
COLUMN nov_dollars format 999,990.90
COLUMN dec_dollars format 999,990.90
SELECT p.prod_category, p.prod_subcategory,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 10
 AND t.calendar_year = 2001

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 10
 AND t.calendar_year = 2001

THEN amount_sold
 END) AS OCT_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 11
 AND t.calendar_year = 2001

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 11
 AND t.calendar_year = 2001

THEN amount_sold
 END) AS NOV_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 12
 AND t.calendar_year = 2001

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 12
 AND t.calendar_year = 2001

THEN amount_sold
 END) AS DEC_dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY 1, 2
/

PROD_CATEGORY PROD_SUBCATEGORY OCT_DOLLARS NOV_DOLLARS DEC_DOLLARS
---------------- -------------------- ----------- ----------- -----------
Electronics Game Consoles 105,876.22 88,989.00 193,546.85
 Home Audio 220,133.02 246,483.07 252,605.84
 Y Box Accessories 14,769.55 15,101.27 12,499.64
 Y Box Games 52,945.94 55,197.39 45,690.73

Hardware Desktop PCs 153,857.16 239,435.84 180,910.18
 Portable PCs 192,513.25 201,927.44 205,868.81

Peripherals and Accessories 65,193.15 53,754.82 69,484.05
Accessories

 CD-ROM 63,934.53 65,239.50 37,439.03
 Memory 126,492.82 116,220.35 120,243.47
 Modems/Fax 85,488.22 75,540.22 82,163.87

 Monitors 338,795.95 309,261.00 318,457.99
 Printer Supplies 126,890.11 103,908.88 98,610.61

Photo Camcorders 276,726.14 302,757.06 309,163.10
 Camera Batteries 87,368.25 77,983.22 64,453.74
 Camera Media 55,979.88 60,589.43 46,312.73
 Cameras 222,135.47 217,513.90 250,361.61

Software/Other Accessories 60,090.11 46,264.68 50,513.14
 Bulk Pack Diskettes 8,816.24 6,497.00 7,066.86
 Documentation 63,202.96 67,330.54 78,742.43
 Operating Systems 89,284.76 106,532.85 96,790.97
 Recordable CDs 22,849.65 20,342.21 26,734.34
 Recordable DVD Discs 74,207.23 57,712.70 60,317.69

22 rows selected.

One of the problems with DECODE is that writing multi-part logical expressions using the AND
operator can be a little cumbersome as each AND operation would require an additional nested
DECODE so, although example 3a might look long-winded and slightly difficult to follow (imagine
if the report covered 18 months, rather than 3), the DECODE version would be worse! You’re
likely to find CASE expressions much easier to work with.

However, I’ve just fallen into a common trap when using CASE. The logic it allows us to
implement is so flexible that it can encourage us to produce logically consistent but inefficient
code if we're not careful. The thing to keep in mind is that when you use CASE in the SELECT
list, it is a post-retrieval function. What this example will do is trawl through all of the sales figures,
then apply a DECODE function to it in such a way as to exclude most sales from the result,
because they didn’t occur in the last quarter of 2001.

Another way of looking at this is that we are using CASE expressions in the SELECT clause to
eliminate results that should have been eliminated much earlier, in the WHERE clause. Why
retrieve data that we know we are going to discard subsequently! After all, that’s the whole point
of these techniques, to reduce the workload required to produce the reports

A better way of achieving the same result is shown in Example 3b.

Example 3b

SELECT p.prod_category, p.prod_subcategory,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 10

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 10

THEN amount_sold
 END) AS OCT_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 11

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 11

THEN amount_sold
 END) AS NOV_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 12

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 12

THEN amount_sold
 END) AS DEC_dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
AND t.calendar_month_number BETWEEN 10 AND 12

GROUP BY p.prod_category, p.prod_subcategory
ORDER BY 1, 2
/

The additional lines in the WHERE clause, shown in bold text will ensure that we reduce the
volume of data that we’re processing to the minimum first. We’re not interested in any sales data
that doesn’t occur in the last quarter of 2001, so let’s not even bother selecting it and, given that
we’ve just eliminated the data that we’re not interested in, there’s no need to check the year in the
CASE expressions any more.

The interesting thing is that the optimiser will choose the same execution plan for both of these
queries and so any performance gain is minimal. However, it’s a useful principle when writing
SQL statements to eliminate as much data as possible as early as possible – with the most
selective WHERE clause. This gives the optimiser the best chance of choosing an efficient
access path and reduces the resource requirements.

In many cases the difference between having logic in the WHERE clause instead of the SELECT
clause will be dramatic because Oracle will be able to use an index to retrieve a smaller amount
of data more quickly. The golden rule is

Use the WHERE clause to eliminate all unnecessary data first and then use CASE in the
SELECT list for additional processing.

Beyond Equality

All of the examples so far have used simple equality tests. This is the limit of what the DECODE
function can do. (There are workarounds to this using the SIGN, GREATEST or LEAST functions,
for example – see the original DECODE paper for details).

However, CASE Expressions allows us to mix and match conditional tests on different
combinations of columns, literal values and operators. For example, the sales manager might like
to see the previous report modified so that the 10% markup is only applied to sales where the
amount_sold is between 1000 and 2000

Example 3c

SELECT p.prod_category, p.prod_subcategory,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 10
 AND s.amount_sold BETWEEN 1000 AND 2000

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 10

THEN amount_sold
 END) AS OCT_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 11
 AND s.amount_sold BETWEEN 1000 AND 2000

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 11

THEN amount_sold
 END) AS NOV_dollars,
 C HEN p.prod_category = 'Photo' AND t.calen
 AND s.amount_sold BETWEEN 1000 AND 2000
 SUM(ASE W dar_month_number = 12

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 12

THEN amount_sold
 END) AS DEC_dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id

AND t.calendar_year = 2001
AND t.calendar_month_number BETWEEN 10 AND 12
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY 1, 2
/

PROD_CATEGORY PROD_SUBCATEGORY OCT_DOLLARS NOV_DOLLARS DEC_DOLLARS
---------------- -------------------- ----------- ----------- -----------
Electronics Game Consoles 105,876.22 88,989.00 193,546.85
 Home Audio 220,133.02 246,483.07 252,605.84
 Y Box Accessories 14,769.55 15,101.27 12,499.64
 Y Box Games 52,945.94 55,197.39 45,690.73

Hardware Desktop PCs 153,857.16 239,435.84 180,910.18
 Portable PCs 192,513.25 201,927.44 205,868.81

Peripherals and Accessories 65,193.15 53,754.82 69,484.05
Accessories

 CD-ROM 63,934.53 65,239.50 37,439.03
 Memory 126,492.82 116,220.35 120,243.47
 Modems/Fax 85,488.22 75,540.22 82,163.87
 Monitors 338,795.95 309,261.00 318,457.99
 Printer Supplies 126,890.11 103,908.88 98,610.61

Photo Camcorders 276,726.14 302,757.06 309,163.10
 Camera Batteries
 Camera Media
 Cameras 60,808.07 59,295.81 67,030.02

Software/Other Accessories 60,090.11 46,264.68 50,513.14
 Bulk Pack Diskettes 8,816.24 6,497.00 7,066.86
 Documentation 63,202.96 67,330.54 78,742.43
 Operating Systems 89,284.76 106,532.85 96,790.97
 Recordable CDs 22,849.65 20,342.21 26,734.34
 Recordable DVD Discs 74,207.23 57,712.70 60,317.69

22 rows selected.

Hold on a minute. There’s something wrong with the results for Camera Batteries and Camera
Media. There aren’t any. The problem here is that up until now I’ve been relying on the default
value of NULL being returned if none of the conditions is true, so NULL will be added to the total,
having no effect. (N.B this is subtly different behaviour to how NULL affects an addition operation,
for example. A NULL value in a SUM operation will not force the result to be NULL, it will
effectively be ignored.) However because the amount_sold for ‘Camera Batteries’ is not between
1000 and 2000 for any of the three months (so the first condition fails) but they are ‘Photo’
products (so the second condition fails) NULL will be added to the total repeatedly, with the end
result of NULL. If what we really want to do is show a value of zero, then we need to add an
ELSE clause to each of the CASE expressions, as follows.

SELECT p.prod_category, p.prod_subcategory,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 10
 AND s.amount_sold BETWEEN 1000 AND 2000

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 10

THEN a
 ELSE 0

mount_sold

 END) AS OCT_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 11
 AND s.amount_sold BETWEEN 1000 AND 2000

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 11

THEN amount_sold
 ELSE 0
 END) AS NOV_dollars,
 SUM(CASE WHEN p.prod_category = 'Photo' AND t.calendar_month_number = 12
 AND s.amount_sold BETWEEN 1000 AND 2000

THEN amount_sold *1.1
 WHEN p.prod_category != 'Photo' AND t.calendar_month_number = 12

THEN amount_sold
 ELSE 0
 END) AS DEC_dollars
FROM sales s, times t, products p
WHERE s.time_id = t.time_id
AND s.prod_id = p.prod_id
AND t.calendar_year = 2001
AND t.calendar_month_number BETWEEN 10 AND 12
GROUP BY p.prod_category, p.prod_subcategory
ORDER BY 1, 2
/

PROD_CATEGORY PROD_SUBCATEGORY OCT_DOLLARS NOV_DOLLARS DEC_DOLLARS
---------------- -------------------- ----------- ----------- -----------
Electronics Game Consoles 105,876.22 88,989.00 193,546.85
 Home Audio 220,133.02 246,483.07 252,605.84
 Y Box Accessories 14,769.55 15,101.27 12,499.64
 Y Box Games 52,945.94 55,197.39 45,690.73

Hardware Desktop PCs 153,857.16 239,435.84 180,910.18
 Portable PCs 192,513.25 201,927.44 205,868.81

Peripherals and Accessories 65,193.15 53,754.82 69,484.05
Accessories
 CD-ROM 63,934.53 65,239.50 37,439.03
 Memory 126,492.82 116,220.35 120,243.47
 Modems/Fax 85,488.22 75,540.22 82,163.87
 Monitors 338,795.95 309,261.00 318,457.99
 Printer Supplies 126,890.11 103,908.88 98,610.61

Photo Camcorders 276,726.14 302,757.06 309,163.10
 Camera Batteries 0.00 0.00 0.00
 Camera Media 0.00 0.00 0.00
 Cameras 60,808.07 59,295.81 67,030.02

Software/Other Accessories 60,090.11 46,264.68 50,513.14
 Bulk Pack Diskettes 8,816.24 6,497.00 7,066.86
 Documentation 63,202.96 67,330.54 78,742.43
 Operating Systems 89,284.76 106,532.85 96,790.97
 Recordable CDs 22,849.65 20,342.21 26,734.34
 Recordable DVD Discs 74,207.23 57,712.70 60,317.69

22 rows selected.

That’s better!

Conclusion

Although this paper only shows a few simple examples, it should be clear that CASE expressions
are powerful tool when developing complex reports that perform efficiently. There are no practical
limits on the complexity of the conditions you can test.

The Down side

Before we summarise the strengths of CASE expressions, let's focus on some of the potential
weaknesses if we don't use them appropriately. Most of these are related to coding style and are
therefore under our control. The first is that of code readability. Even a simple query such as
Example 3c can be a little difficult to take in at first. The longer queries that you’re likely to come
across in business applications can become difficult to understand or maintain. The best
approach is to develop clear coding standards from the start, which should include some form of
alignment of indentations to make the individual components of the CASE expressions very clear.

The second, which I mentioned earlier, is that CASE is a post-retrieval function and it is easy to
write code which is spectacularly inefficient but functionally correct. Remember the golden rule :-

Use the WHERE clause to eliminate all unnecessary data first and then use CASE for additional
processing.

The Up side

CASE expressions give us the power to not just retune the access paths of our SQL queries, but
to take a step back from our code, look at the requirement and take a completely different
approach to the task. Instead of limiting our tuning efforts to improving the speed of individual
queries by investigating access paths and join methods, we can reduce the overall number of
queries to retrieve all the data we require and then use CASE to perform certain post-retrieval
tasks. This reminds me of one of the first pieces of Oracle tuning advice I heard, which still holds
true today. Reduce the number of 'trips' to the database to the minimum required to achieve the
objective. If a report is performing multiple accesses against the same tables it is worth examining
whether these might be combined.

CASE bridges the gap between pure SQL and embedding SQL in 3GLs. In some cases, the only
reason that we use a 3GL is to perform cursor loops that allow us to apply additional conditional
processing to the data, row by row, based on the column values. We can often use CASE to
perform that additional processing instead, using more efficient set-based SQL.

CASE works with all modern versions of Oracle and isn't dependent on optimiser improvements
in newer versions. This is because the performance advantage comes from taking a different
approach to the problem that requires Oracle to perform less work, regardless of which optimiser
is in use. The way I see it, the optimiser can only really be expected to optimise your access
paths, not attempt to rewrite your algorithm more efficiently (although I'm sure this will happen in
time). Like most performance tuning activities, the big improvements come from making smart
decisions about your approach before you begin work.

Further Information

Oracle Documentation

Sample Schemas
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10771/toc.htm

CASE Expressions
http://download-
west.oracle.com/docs/cd/B14117_01/server.101/b10759/expressions004.htm#sthref809

Related Articles

http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10771/toc.htm
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10759/expressions004.htm
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10759/expressions004.htm

Sample Schemas article on OTN
http://www.oracle.com/technology/oramag/oracle/02-jul/o42schema.html

Original DECODE paper
http://doug.burns.tripod.com/decode.html

Daniel Morgan’s DECODE and CASE reference
http://www.psoug.org/reference/decode_case.html

AskTom thread on deciphering execution plans
http://asktom.oracle.com/pls/ask/f?p=4950:8:10404375799506113809::NO::F4950_P8_DISPLAY
ID,F4950_P8_CRITERIA:231814117467,

Acknowledgements

I’d like to thank the following people for sparing some of their time to read through the paper,
checking it for accuracy and making some very useful suggestions for improvement. As usual, the
final decisions and all of the mistakes are mine and there would have been more if it wasn’t for
their efforts. Cheers, guys.

Andrew Campbell, Sun Microsystems

Colin Garside, BUPA

John Gilroy, Ask Jeeves

Jari Kuhanen, Sun Microsystems

http://www.oracle.com/technology/oramag/oracle/02-jul/o42schema.html
http://doug.burns.tripod.com/decode.html
http://www.psoug.org/reference/decode_case.html
http://asktom.oracle.com/pls/ask/f?p=4950:8:10404375799506113809::NO::F4950_P8_DISPLAYID,F4950_P8_CRITERIA:231814117467
http://asktom.oracle.com/pls/ask/f?p=4950:8:10404375799506113809::NO::F4950_P8_DISPLAYID,F4950_P8_CRITERIA:231814117467

	Definition

