
Chapter 6.
Generating Output from PL/SQL Programs

The built-in packages offer a number of ways to generate output from within your PL/SQL program.
While updating a database table is, of course, a form of "output" from PL/SQL, this chapter shows you
how to use two packages that explicitly generate output. UTL_FILE reads and writes information in
server-side files, and DBMS_OUTPUT displays information to your screen.

DBMS_OUTPUT: Displaying Output

DBMS_OUTPUT provides a mechanism for displaying information from your PL/SQL program on your
screen (your session's output device, to be more specific). As such, it serves as just about the only
immediately accessible (meaning "free with PL/SQL") means of debugging your PL/SQL stored code.[1]
It is certainly your "lowest common denominator" debugger, similar to the used-and-abused MESSAGE
built-in of Oracle Forms. DBMS_OUTPUT is also the package you are most likely to use to generate
reports from PL/SQL scripts run in SQL*Plus.

Of all the built-in packages, the DBMS_OUTPUT package (and its PUT_LINE procedure, in particular)
is likely to be the one you will find yourself using most frequently. You may therefore find it strange that
I never call DBMS_OUTPUT.PUT_LINE. I find the design and functionality of DBMS_OUTPUT to be
substandard and very frustrating.

In fact, I recommend that you never use this package--at least, not directly. You should instead
encapsulate calls to DBMS_OUTPUT (and the PUT_LINE procedure, in particular) inside a package of
your own construction. This technique is discussed in the "DBMS_OUTPUT Examples" section later in
this chapter.

Getting Started with DBMS_OUTPUT

Oracle Built-in Packages
By Steven Feuerstein, Charles Dye & John Beresniewicz
1st Edition April 1998
1-56592-375-8, Order Number: 3758
956 pages, $49.95, Includes diskette

In this chapter:
DBMS_OUTPUT: Displaying Output
UTL_FILE: Reading and Writing Server-side Files

Page 1 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The DBMS_OUTPUT package is created when the Oracle database is installed. The dbmsoutp.sql script
(found in the built-in packages source code directory, as described in Chapter 1, Introduction) contains
the source code for this package's specification. This script is called by the catproc.sql script, which is
normally run immediately after database creation. The script creates the public synonym
DBMS_OUTPUT for the package. Instance-wise access to this package is provided on installation, so no
additional steps should be necessary in order to use DBMS_OUTPUT. As far as package usage is
concerned, you will almost always be using only the DBMS_OUTPUT.PUT_LINE procedure and only in
SQL*Plus. The section "Enabling and Disabling Output" later in this chapter shows how you set up
DBMS_OUTPUT for use in SQL*Plus.

DBMS_OUTPUT programs

Table 6-1 shows the DBMS_OUTPUT program names and descriptions.

NOTE: All procedures in DBMS_OUTPUT have been enabled for indirect usage in SQL
(that is, they can be called by a function that is then executed in a SQL statement), but only
for Oracle 7.3 and later.

DBMS_OUTPUT concepts

Each user has a DBMS_OUTPUT buffer of up to 1,000,000 bytes in size. Write information to this buffer
by calling the DBMS_OUTPUT.PUT and DBMS_OUTPUT.PUT_LINE programs. If you are using
DBMS_OUTPUT from within SQL*Plus, this information will be displayed automatically when your
program terminates. You can (optionally) explicitly retrieve information from the buffer with calls to
DBMS_OUTPUT.GET and DBMS_OUTPUT.GET_LINE.

The DBMS_OUTPUT buffer can be set to a size between 2,000 and 1,000,000 bytes with the
DBMS_OUTPUT.ENABLE procedure. If you do not enable the package, no information will be
displayed or be retrievable from the buffer.

The buffer stores three different types of data--VARCHAR2, NUMBER, and DATE--in their internal
representations. These types match the overloading available with the PUT and PUT_LINE procedures.
Note that DBMS_OUTPUT does not support Boolean data in either its buffer or its overloading of the
PUT procedures.

Table 6-1: DBMS_OUTPUT Programs

Name Description Use in
SQL?

DISABLE Disables output from the package; the DBMS_OUTPUT buffer will not be
flushed to the screen Yes

ENABLE Enables output from the package Yes
GET_LINE Gets a single line from the buffer Yes

GET_LINES Gets specified number of lines from the buffer and passes them into a
PL/SQL table Yes

NEW_LINE Inserts an end-of-line mark in the buffer Yes
PUT Puts information into the buffer Yes

PUT_LINE Puts information into the buffer and appends an end-of-line marker after that
data Yes

Page 2 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The following anonymous PL/SQL block uses DBMS_OUTPUT to display the name and salary of each
employee in department 10:

DECLARE
CURSOR emp_cur
IS

SELECT ename, sal
FROM emp

WHERE deptno = 10
ORDER BY sal DESC;

BEGIN
FOR emp_rec IN emp_cur
LOOP

DBMS_OUTPUT.PUT_LINE
('Employee ' || emp_rec.ename || ' earns ' ||
TO_CHAR (emp_rec.sal) || ' dollars.');

END LOOP;
END;
/

This program generates the following output when executed in SQL*Plus:

Employee KING earns 5000 dollars.
Employee SCOTT earns 3000 dollars.
Employee JONES earns 2975 dollars.
Employee ADAMS earns 1100 dollars.
Employee JAMES earns 950 dollars.

DBMS_OUTPUT exceptions

DBMS_OUTPUT does not contain any declared exceptions. Instead, Oracle designed the package to rely
on two error numbers in the -20 NNN range (usually reserved for Oracle customers). You may, therefore,
encounter one of these two exceptions when using the DBMS_OUTPUT package (no names are
associated with these exceptions).

The -20000 error number indicates that these package-specific exceptions were raised by a call to
RAISE_APPLICATION_ERROR, which is in the DBMS_STANDARD package.

-20000
ORU-10027: buffer overflow, limit of <buf_limit> bytes.

If you receive the -10027 error, you should see if you can increase the size of your buffer with
another call to DBMS_OUTPUT.ENABLE.

-20000
ORU-10028: line length overflow, limit of 255 bytes per line.

If you receive the -10028 error, you should restrict the amount of data you are passing to the buffer
in a single call to PUT_LINE, or in a batch of calls to PUT followed by NEW_LINE.

You may also receive the ORA-06502 error:

ORA-06502
Numeric or value error.

Page 3 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

If you receive the -06502 error, you have tried to pass more than 255 bytes of data to
DBMS_OUTPUT.PUT_LINE. You must break up the line into more than one string.

DBMS_OUTPUT nonprogram elements

The DBMS_OUTPUT package defines a PL/SQL table TYPE as follows:

TYPE chararr IS TABLE OF VARCHAR2(255) INDEX BY BINARY_INTEGER;

The DBMS_OUTPUT.GET_LINES procedure returns its lines in a PL/SQL table of this type.

Drawbacks of DBMS_OUTPUT

Before learning all about this package, and rushing to use it, you should be aware of several drawbacks
with the implementation of this functionality:

 The "put" procedures that place information in the buffer are overloaded only for strings, dates, and
numbers. You cannot request the display of Booleans or any other types of data. You cannot display
combinations of data (a string and a number, for instance), without performing the conversions and
concatentations yourself.

 You will see output from this package only after your program completes its execution. You cannot
use DBMS_OUTPUT to examine the results of a program while it is running. And if your program
terminates with an unhandled exception, you may not see anything at all!

 If you try to display strings longer than 255 bytes, DBMS_OUTPUT will raise a VALUE_ERROR
exception.

 DBMS_OUTPUT is not a strong choice as a report generator, because it can handle a maximum of
only 1,000,000 bytes of data in a session before it raises an exception.

 If you use DBMS_OUTPUT in SQL*Plus, you may find that any leading blanks are automatically
truncated. Also, attempts to display blank or NULL lines are completely ignored.

There are workarounds for almost every one of these drawbacks. The solution invariably requires the
construction of a package that encapsulates and hides DBMS_OUTPUT. This technique is explained in
the "DBMS_OUTPUT Examples" section.

Enabling and Disabling Output

The ENABLE and DISABLE procedures enable and disable output from the
DBMS_OUTPUT.PUT_LINE (and PUT and PUTF) procedure.

The DBMS_OUTPUT.ENABLE procedure

The ENABLE procedure enables calls to the other DBMS_OUTPUT modules. If you do not first call
ENABLE, then any other calls to the package modules are ignored. The specification for the procedure is,

PROCEDURE DBMS_OUTPUT.ENABLE (buffer_size IN INTEGER DEFAULT 20000);

where buffer_size is the size of the buffer that will contain the information stored by calls to PUT and

Page 4 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

PUT_LINE. The buffer size can be as large as 1,000,000 bytes. You can pass larger values to this
procedure without raising an error, but doing so will have no effect besides setting the buffer size to its
maximum.

You can call ENABLE more than once in a session. The buffer size will be set to the largest size passed in
any call to ENABLE. In other words, the buffer size is not necessarily set to the size specified in the last
call.

If you want to make sure that the DBMS_OUTPUT package is enabled in a program you are testing, add
a statement like this one to the start of the program:

DECLARE
... declarations ...

BEGIN
DBMS_OUTPUT.ENABLE (1000000);
...

END;

The DBMS_OUTPUT.DISABLE procedure

The DISABLE procedure disables all calls to the DBMS_OUTPUT package (except for ENABLE). It
also purges the buffer of any remaining lines of information. Here's the specification for the procedure:

PROCEDURE DBMS_OUTPUT.DISABLE;

SQL*Plus and SQL*DBA offer a native command, SET SERVEROUTPUT, with which you can disable
the package without having to execute the DISABLE procedure directly. You can use the command as
follows:

SQL> SET SERVEROUTPUT OFF

This command is equivalent to the following PL/SQL statement:

DBMS_OUTPUT.DISABLE;

After you execute this command, any calls to PUT_LINE and other modules will be ignored, and you will
not see any output.

Enabling output in SQL*Plus

Most developers use DBMS_OUTPUT almost exclusively in the SQL*Plus environment. To enable
output from calls to PUT_LINE in SQL*Plus, you will use the SET SERVEROUTPUT command,

SET SERVEROUTPUT ON SIZE 1000000

or:

SET SERVEROUTPUT ON

Each of these calls the DBMS_OUTPUT.ENABLE procedure.

I have found it useful to add SET SERVEROUTPUT ON SIZE 1000000 to my login.sql file, so that the
package is automatically enabled whenever I go into SQL*Plus. (I guess that tells you how often I have to

Page 5 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

debug my code!)

You should also check the Oracle documentation for SQL*Plus to find out about the latest set of options
for the SET SERVEROUTPUT command. As of Oracle8, the documentation shows the following syntax
for this SET command:

SET SERVEROUT[PUT] {OFF|ON}
[SIZE n] [FOR[MAT] {WRA[PPED]| WOR[D_WRAPPED]|TRU[NCATED]}]

In other words, you have these options when you enable DBMS_OUTPUT in SQL*Plus:

SET SERVEROUTPUT OFF
Turns off the display of text from DBMS_OUTPUT.

SET SERVEROUTPUT ON
Turns on the display of text from DBMS_OUTPUT with the default 2000-byte buffer. This is a
very small size for the buffer; I recommend that you always specify a size when you call this
command.

SET SERVEROUTPUT ON SIZE NNNN
Turns on the display of text from DBMS_OUTPUT with the specified buffer size (maximum of
1,000,000 bytes).

SET SERVEROUTPUT ON FORMAT WRAPPED
(Available in Oracle 7.3 and later only.) Specifies that you want the text displayed by
DBMS_OUTPUT wrapped at the SQL*Plus line length. The wrapping occurs regardless of word
separation. This will also stop SQL*Plus from stripping leading blanks from your text. You can
also specify a SIZE value with this variation.

SET SERVEROUTPUT ON FORMAT WORD_WRAPPED
(Available in Oracle 7.3 and later only.) Specifies that you want the text displayed by
DBMS_OUTPUT wrapped at the SQL*Plus line length. This version respects integrity of "words."
As a result, lines will be broken in a way that keeps separate tokens intact. This will also stop
SQL*Plus from stripping leading blanks from your text. You can also specify a SIZE value with
this variation.

SET SERVEROUTPUT ON FORMAT TRUNCATED
(Available in Oracle 7.3 and later only.) Specifies that you want the text displayed by
DBMS_OUTPUT to be truncated at the SQL*Plus line length; the rest of the text will not be
displayed. This will also stop SQL*Plus from stripping leading blanks from your text. You can also
specify a SIZE value with this variation.

Writing to the DBMS_OUTPUT Buffer

You can write information to the buffer with calls to the PUT, NEW_LINE, and PUT_LINE procedures.

The DBMS_OUTPUT.PUT procedure

The PUT procedure puts information into the buffer, but does not append a newline marker into the
buffer. Use PUT if you want to place information in the buffer (usually with more than one call to PUT),
but not also automatically issue a newline marker. The specification for PUT is overloaded, so that you

Page 6 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

can pass data in its native format to the package without having to perform conversions,

PROCEDURE DBMS_OUTPUT.PUT (A VARCHAR2);
PROCEDURE DBMS_OUTPUT.PUT (A NUMBER);
PROCEDURE DBMS_OUTPUT.PUT (A DATE);

where A is the data being passed.

Example

In the following example, three simultaneous calls to PUT place the employee name, department ID
number, and hire date into a single line in the DBMS_OUTPUT buffer:

DBMS_OUTPUT.PUT (:employee.lname || ', ' || :employee.fname);
DBMS_OUTPUT.PUT (:employee.department_id);
DBMS_OUTPUT.PUT (:employee.hiredate);

If you follow these PUT calls with a NEW_LINE call, that information can then be retrieved with a single
call to GET_LINE.

The DBMS_OUTPUT.PUT_LINE procedure

The PUT_LINE procedure puts information into the buffer and then appends a newline marker into the
buffer. The specification for PUT_LINE is overloaded, so that you can pass data in its native format to the
package without having to perform conversions:

PROCEDURE DBMS_OUTPUT.PUT_LINE (A VARCHAR2);
PROCEDURE DBMS_OUTPUT.PUT_LINE (A NUMBER);
PROCEDURE DBMS_OUTPUT.PUT_LINE (A DATE);

The PUT_LINE procedure is the one most commonly used in SQL*Plus to debug PL/SQL programs.
When you use PUT_LINE in these situations, you do not need to call GET_LINE to extract the
information from the buffer. Instead, SQL*Plus will automatically dump out the DBMS_OUTPUT buffer
when your PL/SQL block finishes executing. (You will not see any output until the program ends.)

Of course, you can also call DBMS_OUTPUT programs directly from the SQL*Plus command prompt,
and not from inside a PL/SQL block, as shown in the following example.

Example

Suppose that you execute the following three statements in SQL*Plus:

SQL> exec DBMS_OUTPUT.PUT ('I am');
SQL> exec DBMS_OUTPUT.PUT (' writing ');
SQL> exec DBMS_OUTPUT.PUT ('a ');

You will not see anything, because PUT will place the information in the buffer, but will not append the
newline marker. When you issue this next PUT_LINE command,

SQL> exec DBMS_OUTPUT.PUT_LINE ('book!');

you will then see the following output:

Page 7 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

I am writing a book!

All of the information added to the buffer with the calls to PUT waited patiently to be flushed out with the
call to PUT_LINE. This is the behavior you will see when you execute individual calls at the SQL*Plus
command prompt to the put programs.

If you place these same commands in a PL/SQL block,

BEGIN
DBMS_OUTPUT.PUT ('I am');
DBMS_OUTPUT.PUT (' writing ');
DBMS_OUTPUT.PUT ('a ');
DBMS_OUTPUT.PUT_LINE ('book');

END;
/

the output from this script will be exactly the same as that generated by this single call:

SQL> exec DBMS_OUTPUT.PUT_LINE ('I am writing a book!');

The DBMS_OUTPUT.NEW_LINE procedure

The NEW_LINE procedure inserts an end-of-line marker in the buffer. Use NEW_LINE after one or
more calls to PUT in order to terminate those entries in the buffer with a newline marker. Here's the
specification for NEW_LINE:

PROCEDURE DBMS_OUTPUT.NEW_LINE;

Retrieving Data from the DBMS_OUTPUT Buffer

You can use the GET_LINE and GET_LINES procedures to extract information from the
DBMS_OUTPUT buffer. If you are using DBMS_OUTPUT from within SQL*Plus, however, you will
never need to call either of these procedures. Instead, SQL*Plus will automatically extract the information
and display it on the screen for you.

The DBMS_OUTPUT.GET_LINE procedure

The GET_LINE procedure retrieves one line of information from the buffer. Here's the specification for
the procedure:

PROCEDURE DBMS_OUTPUT.GET_LINE
(line OUT VARCHAR2,
status OUT INTEGER);

The parameters are summarized in the following table.

The line can have up to 255 bytes in it, which is not very long. If GET_LINE completes successfully, then
status is set to 0. Otherwise, GET_LINE returns a status of 1.

Parameter Description
line Retrieved line of text
status GET request status

Page 8 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

Notice that even though the PUT and PUT_LINE procedures allow you to place information into the
buffer in their native representations (dates as dates, numbers and numbers, and so forth), GET_LINE
always retrieves the information into a character string. The information returned by GET_LINE is
everything in the buffer up to the next newline character. This information might be the data from a single
PUT_LINE or from multiple calls to PUT.

Example

The following call to GET_LINE extracts the next line of information into a local PL/SQL variable:

FUNCTION get_next_line RETURN VARCHAR2
IS

return_value VARCHAR2(255);
get_status INTEGER;

BEGIN
DBMS_OUTPUT.GET_LINE (return_value, get_status);
IF get_status = 0
THEN

RETURN return_value;
ELSE

RETURN NULL;
END IF;

END;

The DBMS_OUTPUT.GET_LINES procedure

The GET_LINES procedure retrieves multiple lines from the buffer with one call. It reads the buffer into
a PL/SQL string table. Here's the specification for the procedure:

PROCEDURE DBMS_OUTPUT.GET_LINES
(lines OUT DBMS_OUTPUT.CHARARR,
numlines IN OUT INTEGER);

The parameters for this procedure are summarized in the following table.

The lines parameter is a PL/SQL table TYPE declared in the specification of the package. It is described
at the beginning of this chapter.

The values retrieved by GET_LINES are placed in the first numlines rows in the table, starting from row
one. As indicated in the PL/SQL table structure, each line (row in the table) may contain up to 255 bytes.

Notice that numlines is an IN OUT parameter. The IN aspect of the parameter specifies the number of
lines to retrieve. Once GET_LINES is done retrieving data, however, it sets numlines to the number of
lines actually placed in the table. If you ask for ten rows and there are only six in the buffer, then you need
to know that only the first six rows of the table are defined.

Notice also that even though the PUT and PUT_LINE procedures allow you to place information into the
buffer in their native representations (dates as dates, numbers and numbers, and so forth), GET_LINES

Parameter Description
lines PL/SQL array where retrieved lines are placed
numlines Number of individual lines retrieved from the buffer and placed into the array

Page 9 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

always retrieves the information into a character string. The information in each line returned by
GET_LINES is everything in the buffer up to the next newline character. This information might be the
data from a single PUT_LINE or from multiple calls to PUT.

While GET_LINES is provided with the DBMS_OUTPUT package, it is not needed to retrieve
information from the DBMS_OUTPUT buffer--at least when used inside SQL*Plus. In this interactive
query tool, you simply execute calls to PUT_LINE, and when the PL/SQL block terminates, SQL*Plus
will automatically dump the buffer to the screen.

Example

The following script demonstrates both the kind of code you would write when using the GET_LINES
procedure, and also the way in which the PL/SQL table is filled:

/* Filename on companion disk: getlines.tst */

DECLARE
output_table DBMS_OUTPUT.CHARARR; /* output_buf_tab */
a_line VARCHAR2(10) := RPAD('*',10,'*');
status INTEGER;
max_lines CONSTANT NUMBER := 15;

BEGIN
output_table (0) := 'ABC';
output_table (12) := 'DEF';

/* Output 10 lines */
FOR linenum IN 1..10
LOOP

DBMS_OUTPUT.PUT_LINE (a_line || TO_CHAR (linenum);
END LOOP;
/* retrieve 15 lines, status will receive the line count */
status := max_lines;
DBMS_OUTPUT.GET_LINES (output_table, status);
DBMS_OUTPUT.PUT_LINE ('lines retrieved= ' || status));

FOR linenum in 0..max_lines
LOOP

BEGIN
DBMS_OUTPUT.PUT_LINE

(linenum || ':' || NVL (output_table(linenum),'<null>'));
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE (linenum || ':' || sqlerrm);
END;

END LOOP;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE ('Exception, status=' || status);
DBMS_OUTPUT.PUT_LINE (SQLERRM);

END;
/

Here is the output from the execution of this script:

lines retrieved= 10
0:ORA-01403: no data found

Page 10 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

1:**********1
2:**********2
3:**********3
4:**********4
5:**********5
6:**********6
7:**********7
8:**********8
9:**********9
10:**********10
11:<null>
12:ORA-01403: no data found
13:ORA-01403: no data found
14:ORA-01403: no data found
15:ORA-01403: no data found

You can therefore deduce the following rules:

1. The PL/SQL table is filled starting with row 1.

2. If DBMS_OUTPUT.GET_LINES finds N lines of data to pass to the PL/SQL table, it sets row N+1
in that table to NULL.

3. All other rows in the PL/SQL table are set to "undefined." In other words, any other rows that might
have been defined before the call to GET_LINES are deleted.

Tips on Using DBMS_OUTPUT

As noted at the beginning of the chapter, DBMS_OUTPUT comes with several handicaps. The best way
to overcome these handicaps is to create your own layer of code over the built-in package. This technique
is explored in the "DBMS_OUTPUT Examples" section.

Regardless of the use of an encapsulation package, you should keep the following complications in mind
as you work with DBMS_OUTPUT:

1. If your program raises an unhandled exception, you may not see any executed output from
PUT_LINE, even if you enabled the package for output .

This can happen because the DBMS_OUTPUT buffer will not be flushed until it is full or until the
current PL/SQL block completes its execution. If a raised exception never gets handled, the buffer
will not be flushed. As a result, calls to the DBMS_OUTPUT.PUT_LINE module might never
show their data. So if you are working with DBMS_OUTPUT.PUT_LINE and are frustrated
because you are not seeing the output you would expect, make sure that you have:

a. Enabled output from the package by calling SET SERVEROUTPUT ON in SQL*Plus.

b. Placed an exception section with a WHEN OTHERS handler in the outer block of your code
(usually some sort of test script) so that your output can be flushed to your terminal by
SQL*Plus.

2. When package state has been reinitialized in your session, DBMS_OUTPUT is reset to "not
enabled."

Page 11 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

Packages can be reset to their initial state with a call to DBMS_SESSION.RESET_PACKAGE.
(See Chapter 11, Managing Session Information, for more information about this program.) You
might call this procedure yourself, but that is unlikely. A more common scenario for resetting
package states is when an error is raised in your session that causes packages to be reset to their
initial state. Here is the error for which you need to beware:

ERROR at line 1:

ORA-04068: existing state of packages has been discarded
ORA-04061: existing state of package "PKG.PROC" has been invalidated
ORA-04065: not executed, altered or dropped package "PKG.PROC"
ORA-06508: PL/SQL: could not find program unit being called

If you get this error and simply continue with your testing, you may be surprised to find that you are not
getting any output. If you remember that DBMS_OUTPUT relies on package variables for its settings,
this makes perfect sense. So when you get the preceding error, you should immediately "re-enable"
DBMS_OUTPUT with a command such as the following:

SQL> set serveroutput on size 1000000 format wrapped

I usually just re-execute my login.sql script, since I may be initializing several different packages:

SQL> @login.sql

When will you get this error? I have found that it occurs when I have multiple sessions connected to
Oracle. Suppose that I am testing program A in session USER1. I run it and find a bug. I fix the bug and
recompile program A in session USER2 (the owner of the code). When I try to execute program A from
session USER1 again, it raises the ORA-04068 error.

If you do encounter this error, don't panic. Just reset your package variables and run the program again. It
will now work fine; the error is simply the result of a quirk in Oracle's automatic recompilation feature.

DBMS_OUTPUT Examples

This section contains several longer examples of DBMS_OUTPUT operations.

Encapsulating DBMS_OUTPUT

Sure, it was nice of Oracle Corporation to give us the DBMS_OUTPUT package. Without it, as users of
PL/SQL 1.0 found, we are running blind when we execute our code. As is the case with many of the
developer-oriented utilities from Oracle, however, the DBMS_OUTPUT package is not a polished and
well-planned tool. It offers nothing more than the most basic functionality, and even then it is crippled in
some important ways. When I started to use it in real life (or whatever you might call the rarified
atmosphere of authoring a book on software development), I found DBMS_OUTPUT.PUT_LINE to be
cumbersome and limiting in ways.

I hated having to type "DBMS_OUTPUT.PUT_LINE" whenever I simply wanted to display some
information. That's a mouthful and a keyboardful. I felt insulted that they hadn't even taken the time to
overload for Booleans, requiring me to write silly IF logic just to see the value of a Boolean variable or
function. I also found myself growing incensed that DBMS_OUTPUT would actually raise a
VALUE_ERROR exception if I tried to pass it a string with more than 255 characters. I had enough errors
in my code without having to worry about DBMS_OUTPUT adding to my troubles.

Page 12 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

I decided that all this anger and frustration was not good for me. I needed to move past this
nonconstructive lashing out at Oracle. I needed, in short, to fix my problem. So I did--with a package of
my own. I am not going to provide a comprehensive explanation of my replacement package, but you can
read about it (there are actually two of them) in my other books as follows:

Oracle PL/SQL Programming
The Companion Disk section on "Package Examples" introduces you to the do package, which
contains the do.pl procedure, a substitute for DBMS_OUTPUT.PUT_LINE. The do.sps and do.spb
files in the book you are reading also contain the source code for this package.

Advanced Oracle PL/SQL Programming with Packages
Chapter 7, p: A Powerful Substitute for DMBS_OUTPUT, presents the p package and the p.l
procedure (I told you I didn't like typing those long program names!), a component of the
PL/Vision library.[2]

The following section shows you the basic elements involved in constructing an encapsulation around
DBMS_OUTPUT.PUT_LINE, which compensates for many of its problems. You can pursue building
one of these for yourself, but I would strongly suggest that you check out the PL/Vision p package. That
will leave you more time to build your own application-specific code.

Package specification for a DBMS_OUTPUT encapsulator

The absolute minimum you need for such an encapsulator package is an overloading of the "print"
procedure for dates, strings, and numbers. Let's at least add Booleans to the mix in this prototype:

/* Filename on companion disk: prt.spp */

CREATE OR REPLACE PACKAGE prt
IS

c_prefix CONSTANT CHAR(1) := '*';
c_linelen CONSTANT INTEGER := 80;

PROCEDURE ln (val IN VARCHAR2);
PROCEDURE ln (val IN DATE);
PROCEDURE ln (val IN NUMBER);
PROCEDURE ln (val IN BOOLEAN);

END;
/

The prefix constant is concatenated to the beginning of any string to be displayed to avoid the problem of
truncated spaces and ignored lines in SQL*Plus. The line length constant is used when the string is longer
than 255 bytes. Finally, each of the prt.ln procedures prints a different type of data.

A complete implementation of this package would allow you to change the line length and the prefix,
specify a date format for conversion, and so on. Again, check out the p package of PL/Vision for such a
package.

Here is the body of the prt package:

/* Filename on companion disk: prt.spp */

CREATE OR REPLACE PACKAGE BODY prt
IS

PROCEDURE ln (val IN VARCHAR2)

Page 13 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

IS
BEGIN

IF LENGTH (val) > 255
THEN

PLVprs.display_wrap (val, c_linelen);
ELSE

DBMS_OUTPUT.PUT_LINE (c_prefix || val);
END IF;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.ENABLE (1000000);
DBMS_OUTPUT.PUT_LINE (c_prefix || val);

END;
PROCEDURE ln (val IN DATE)
IS
BEGIN

ln (TO_CHAR (val));
END;
PROCEDURE ln (val IN NUMBER)
IS
BEGIN

ln (TO_CHAR (val));
END;
PROCEDURE ln (val IN BOOLEAN)
IS
BEGIN

IF val
THEN

ln ('TRUE');
ELSIF NOT val
THEN

ln ('FALSE');
ELSE

ln ('NULL BOOLEAN');
END IF;

END;
END;
/

Here are a few things to notice about the package implementation:

 The string version of prt.ln is the "core" print procedure. The other three programs all call that one,
after they have formatted the string appropriately.

 The Boolean version of prt.ln simply performs the same IF logic you would have to write if you
were using DBMS_OUTPUT. By hiding it inside the prt procedure, though, nobody else has to
write that kind of code again. Plus, it handles NULL values.

 The string version of prt.ln contains all the complex logic. For long strings, it relies on the
PL/Vision display wrap procedure of the PLVprs package.[3] For strings with fewer than 256
characters, it calls DBMS_OUTPUT.PUT_LINE.

 As an added feature, if the attempt to display using DBMS_OUTPUT.PUT_LINE raises an
exception, prt.ln assumes that the problem might be that the buffer is too small. So it increases the
buffer to the maximum possible value and then tries again. I believe that it is very important for
developers to make the extra effort to increase the usefulness of our code.

Page 14 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The prt package should give you a solid idea about the way to encapsulate a built-in package inside a
package of your own construction.

UTL_FILE: Reading and Writing
Server-side Files

UTL_FILE is a package that has been welcomed warmly by PL/SQL developers. It allows PL/SQL
programs to both read from and write to any operating system files that are accessible from the server on
which your database instance is running. File I/O was a feature long desired in PL/SQL, but available
only with PL/SQL Release 2.3 and later (Oracle 7.3 or Oracle 8.0). You can now read ini files and interact
with the operating system a little more easily than has been possible in the past. You can load data from
files directly into database tables while applying the full power and flexibility of PL/SQL programming.
You can generate reports directly from within PL/SQL without worrying about the maximum buffer
restrictions of DBMS_OUTPUT

Getting Started with UTL_FILE

The UTL_FILE package is created when the Oracle database is installed. The utlfile.sql script (found in
the built-in packages source code directory, as described in Chapter 1) contains the source code for this
package's specification. This script is called by catproc.sql, which is normally run immediately after
database creation. The script creates the public synonym UTL_FILE for the package and grants
EXECUTE privilege on the package to public. All Oracle users can reference and make use of this
package.

UTL_FILE programs

Table 6-2 shows the UTL_FILE program names and descriptions.

Trying out UTL_FILE

Just getting to the point where your first call to UTL_FILE's FOPEN function works can actually be a
pretty frustrating experience. Here's how it usually goes.

Table 6-2: UTL_FILE Programs

Name Description Use in SQL
FCLOSE Closes the speci?ed ?les No
FCLOSE_ALL Closes all open ?les No
FFLUSH Flushes all the data from the UTL_FILE buffer No
FOPEN Opens the speci?ed ?le No
GET_LINE Gets the next line from the ?le No
IS_OPEN Returns TRUE if the ?le is already open No
NEW_LINE Inserts a newline mark in the ?le at the end of the current line No
PUT Puts text into the buffer No
PUT_LINE Puts a line of text into the ?le No
PUTF Puts formatted text into the buffer No

Page 15 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

You read about UTL_FILE and you are excited. So you dash headlong into writing some code like this,

DECLARE
config_file UTL_FILE.FILE_TYPE;

BEGIN
config_file := UTL_FILE.FOPEN ('/tmp', 'newdata.txt', 'W');

... lots of write operations ...

... and no exception section ...
END;
/

and then this is all you get from your "quick and dirty script" in SQL*Plus:

SQL> @writefile.sql
DECLARE
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at "SYS.UTL_FILE", line 91
ORA-06512: at "SYS.UTL_FILE", line 146
ORA-06512: at line 4

What is going wrong? This error message certainly provides little or no useful information. So you go
back to the documentation, thoroughly chastened, and (over time) discover the following:

 You need to modify the INIT.ORA parameter initialization file of your instance. You will have to
contact your database administrator and have him or her make the changes (if willing) and then
"bounce" the database.

 You need to get the format of the parameter entries correct. That alone used to take me days!

 You need to add exception sections to your programs to give yourself a fighting chance at figuring
out what is going on.

I hope that the information in this chapter will help you avoid most, if not all, of these frustrations and
gotchas. But don't give up! This package is well worth the effort.

File security

UTL_FILE lets you read and write files accessible from the server on which your database is running. So
you could theoretically use UTL_FILE to write right over your tablespace data files, control files, and so
on. That is of course a very bad idea. Server security requires the ability to place restrictions on where you
can read and write your files.

UTL_FILE implements this security by limiting access to files that reside in one of the directories
specified in the INIT.ORA file for the database instance on which UTL_FILE is running.

When you call FOPEN to open a file, you must specify both the location and the name of the file, in
separate arguments. This file location is then checked against the list of accessible directories.

Here's the format of the parameter for file access in the INIT.ORA file:

Page 16 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

utl_file_dir = <directory>

Include a parameter for utl_file_dir for each directory you want to make accessible for UTL_FILE
operations. The following entries, for example, enable four different directories in UNIX:

utl_file_dir = /tmp
utl_file_dir = /ora_apps/hr/time_reporting
utl_file_dir = /ora_apps/hr/time_reporting/log
utl_file_dir = /users/test_area

To bypass server security and allow read/write access to all directories, you can use this special syntax:

utl_file_dir = *

You should not use this option on production systems. In a development system, this entry certainly
makes it easier for developers to get up and running on UTL_FILE and test their code. However, you
should allow access to only a few specific directories when you move the application to production.

Some observations on working with and setting up accessible directories with UTL_FILE follow:

 Access is not recursive through subdirectories. If the following lines were in your INIT.ORA file,
for example,

utl_file_dir = c:\group\dev1 utl_file_dir = c:\group\prod\oe utl_file_dir =
c:\group\prod\ar

then you would not be able to open a file in the c:\group\prod\oe\reports subdirectory.

 Do not include the following entry in UNIX systems:

utl_file_dir = .

This would allow you to read/write on the current directory in the operating system.

 Do not enclose the directory names within single or double quotes.

 In the UNIX environment, a file created by FOPEN has as its owner the shadow process running
the Oracle instance. This is usually the "oracle" owner. If you try to access these files outside of
UTL_FILE, you will need the correct privileges (or be logged in as "oracle") to access or change
these files.

 You should not end your directory name with a delimiter, such as the forward slash in UNIX. The
following specification of a directory will result in problems when trying to read from or write to
the directory:

utl_file_dir = /tmp/orafiles/

Specifying file locations

The location of the file is an operating system-specific string that specifies the directory or area in which
to open the file. The location you provide must have been listed as an accessible directory in the
INIT.ORA file for the database instance.

Page 17 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The INIT.ORA location is a valid directory or area specification, as shown in these examples:

 In Windows NT:
'k:\common\debug'

 In UNIX:
'/usr/od2000/admin'

Notice that in Windows NT, the backslash character (\) is used as a delimiter. In UNIX, the forward slash
(/) is the delimiter. When you pass the location in the call to UTL_FILE.FOPEN, you provide the location
specification as it appears in the INIT.ORA file (unless you just provided * for all directories in the
initialization file). And remember that in case-sensitive operating systems, the case of the location
specification in the initialization file must match that used in the call to UTL_FILE.FOPEN.

Here are some examples:

 In Windows NT:
file_id := UTL_FILE.FOPEN ('k:\common\debug', 'trace.lis', 'R');

 In UNIX:
file_id := UTL_FILE.FOPEN ('/usr/od2000/admin', 'trace.lis', 'W');

Your location must be an explicit, complete path to the file. You cannot use operating system-specific
parameters such as environment variables in UNIX to specify file locations.

UTL_FILE exceptions

The package specification of UTL_FILE defines seven exceptions. The cause behind a UTL_FILE
exception can often be difficult to understand. Here are the explanations Oracle provides for each of the
exceptions:

NOTE: As a result of the way these exceptions are declared (as "user-defined exceptions"),
there is no error number associated with any of the exceptions. Thus you must include
explicit exception handlers in programs that call UTL_FILE if you wish to find out which
error was raised. See the section "Handling file I/O errors" for more details on this process.

INVALID_PATH
The file location or the filename is invalid. Perhaps the directory is not listed as a utl_file_dir
parameter in the INIT.ORA file (or doesn't exist as all), or you are trying to read a file and it does
not exist.

INVALID_MODE
The value you provided for the open_mode parameter in UTL_FILE.FOPEN was invalid. It must
be "A," "R," or "W."

INVALID_FILEHANDLE
The file handle you passed to a UTL_FILE program was invalid. You must call UTL_FILE.FOPEN
to obtain a valid file handle.

INVALID_OPERATION
UTL_FILE could not open or operate on the file as requested. For example, if you try to write to a

Page 18 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

read-only file, you will raise this exception.

READ_ERROR
The operating system returned an error when you tried to read from the file. (This does not occur
very often.)

WRITE_ERROR
The operating system returned an error when you tried to write to the file. (This does not occur very
often.)

INTERNAL_ERROR
Uh-oh. Something went wrong and the PL/SQL runtime engine couldn't assign blame to any of the
previous exceptions. Better call Oracle Support!

Programs in UTL_FILE may also raise the following standard system exceptions:

NO_DATA_FOUND
Raised when you read past the end of the file with UTL_FILE.GET_LINE.

VALUE_ERROR
Raised when you try to read or write lines in the file which are too long. The current
implementation of UTL_FILE limits the size of a line read by UTL_FILE.GET_LINE to 1022
bytes.

INVALID_MAXLINESIZE
Oracle 8.0 and above: raised when you try to open a file with a maximum linesize outside of the
valid range (between 1 through 32767).

In the following descriptions of the UTL_FILE programs, I list the exceptions that can be raised by each
individual program.

UTL_FILE nonprogram elements

When you open a file, PL/SQL returns a handle to that file for use within your program. This handle has a
datatype of UTL_FILE.FILE_TYPE currently defined as the following:

TYPE UTL_FILE.FILE_TYPE IS RECORD (id BINARY_INTEGER);

As you can see, UTL_FILE.FILE_TYPE is actually a PL/SQL record whose fields contain all the
information about the file needed by UTL_FILE. However, this information is for use only by the
UTL_FILE package. You will reference the handle, but not any of the individual fields of the handle.
(The fields of this record may expand over time as UTL_FILE becomes more sophisticated.)

Here is an example of how to declare a local file handle based on this type:

DECLARE
file_handle UTL_FILE.FILE_TYPE;

BEGIN
...

UTL_FILE restrictions and limitations

Page 19 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

While UTL_FILE certainly extends the usefulness of PL/SQL, it does have its drawbacks, including:

 Prior to Oracle 8.0, you cannot read or write a line of text with more than 1023 bytes. In Oracle 8.0
and above, you can specify a maximum line size of up to 32767 when you open a file..

 You cannot delete files through UTL_FILE. The best you can do is empty a file, but it will still be
present on the disk.

 You cannot rename files. The best you can do is copy the contents of the file to another file with
that new name.

 You do not have random access to lines in a file. If you want to read the 55th line, you must read
through the first 54 lines. If you want to insert a line of text between the 1,267th and 1,268th lines,
you will have to (a) read those 1,267 lines, (b) write them to a new file, (c) write the inserted line of
text, and (d) read/write the remainder of the file. Ugh.

 You cannot change the security on files through UTL_FILE.

 You cannot access mapped files. Generally, you will need to supply real directory locations for files
if you want to read from or write to them.

You are probably getting the idea. UTL_FILE is a basic facility for reading and writing server-side files.
Working with UTL_FILE is not always pretty, but you can usually get what you need done with a little or
a lot of code.

The UTL_FILE process flow

The following sections describe each of the UTL_FILE programs, following the process flow for working
with files. That flow is described for both writing and reading files.

In order to write to a file you will (in most cases) perform the following steps:

1. Declare a file handle. This handle serves as a pointer to the file for subsequent calls to programs in
the UTL_FILE package to manipulate the contents of this file.

2. Open the file with a call to FOPEN, which returns a file handle to the file. You can open a file to
read, replace, or append text.

3. Write data to the file using the PUT, PUTF, or PUT_LINE procedures.

4. Close the file with a call to FCLOSE. This releases resources associated with the file.

To read data from a file you will (in most cases) perform the following steps:

1. Declare a file handle.

2. Declare a VARCHAR2 string buffer that will receive the line of data from the file. You can also
read directly from a file into a numeric or date buffer. In this case, the data in the file will be
converted implicitly, and so it must be compatible with the datatype of the buffer.

3. Open the file using FOPEN in read mode.

Page 20 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

4. Use the GET_LINE procedure to read data from the file and into the buffer. To read all the lines
from a file, you would execute GET_LINE in a loop.

5. Close the file with a call to FCLOSE.

Opening Files

Use the FOPEN and IS_OPEN functions when you open files via UTL_FILE.

NOTE: Using the UTL-FILE package, you can only open a maximum of ten files for each
Oracle session.

The UTL_FILE.FOPEN function

The FOPEN function opens the specified file and returns a file handle that you can then use to manipulate
the file. Here's the header for the function:

All PL/SQL versions: Oracle 8.0 and above only:
FUNCTION UTL_FILE.FOPEN (FUNCTION UTL_FILE.FOPEN (

location IN VARCHAR2, location IN VARCHAR2,
filename IN VARCHAR2, filename IN VARCHAR2,
open_mode IN VARCHAR2) open_mode IN VARCHAR2,

RETURN file_type; max_linesize IN BINARY_INTEGER)
RETURN file_type;

Parameters are summarized in the following table.

You can open the file in one of three modes:

R

Open the file read-only. If you use this mode, use UTL_FILE's GET_LINE procedure to read from
the file.

W

Open the file to read and write in replace mode. When you open in replace mode, all existing lines
in the file are removed. If you use this mode, then you can use any of the following UTL_FILE
programs to modify the file: PUT, PUT_LINE, NEW_LINE, PUTF, and FFLUSH.

A

Open the file to read and write in append mode. When you open in append mode, all existing lines

Parameter Description
location Location of the file
filename Name of the file
openmode Mode in which the file is to be opened (see the following modes)

max_linesize The maximum number of characters per line, including the newline character, for this file.
Minimum is 1, maximum is 32767

Page 21 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

in the file are kept intact. New lines will be appended after the last line in the file. If you use this
mode, then you can use any of the following UTL_FILE programs to modify the file: PUT,
PUT_LINE, NEW_LINE, PUTF, and fFFLUSH.

Keep the following points in mind as you attempt to open files:

 The file location and the filename joined together must represent a legal filename on your operating
system.

 The file location specified must be accessible and must already exist; FOPEN will not create a
directory or subdirectory for you in order to write a new file, for example.

 If you want to open a file for read access, the file must already exist. If you want to open a file for
write access, the file will either be created, if it does not exist, or emptied of all its contents, if it
does exist.

 If you try to open with append, the file must already exist. UTL_FILE will not treat your append
request like a write access request. If the file is not present, UTL_FILE will raise the
INVALID_OPERATION exception.

Exceptions

FOPEN may raise any of the following exceptions, described earlier:

UTL_FILE.INVALID_MODE
UTL_FILE.INVALID_OPERATION
UTL_FILE.INVALID_PATH
UTL_FILE.INVALID_MAXLINESIZE

Example

The following example shows how to declare a file handle and then open a configuration file for that
handle in read-only mode:

DECLARE
config_file UTL_FILE.FILE_TYPE;

BEGIN
config_file := UTL_FILE.FOPEN ('/maint/admin', 'config.txt', 'R');
...

The UTL_FILE.IS_OPEN function

The IS_OPEN function returns TRUE if the specified handle points to a file that is already open.
Otherwise, it returns false. The header for the function is,

FUNCTION UTL_FILE.IS_OPEN (file IN UTL_FILE.FILE_TYPE) RETURN BOOLEAN;

where file is the file to be checked.

Within the context of UTL_FILE, it is important to know what this means. The IS_OPEN function does
not perform any operating system checks on the status of the file. In actuality, it merely checks to see if
the id field of the file handle record is not NULL. If you don't play around with these records and their
contents, then this id field is only set to a non-NULL value when you call FOPEN. It is set back to NULL

Page 22 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

when you call FCLOSE.

Reading from Files

UTL_FILE provides only one program to retrieve data from a file: the GET_LINE procedure.

The UTL_FILE.GET_LINE procedure

The GET_LINE procedure reads a line of data from the specified file, if it is open, into the provided line
buffer. Here's the header for the procedure:

PROCEDURE UTL_FILE.GET_LINE
(file IN UTL_FILE.FILE_TYPE,
buffer OUT VARCHAR2);

Parameters are summarized in the following table.

The variable specified for the buffer parameter must be large enough to hold all the data up to the next
carriage return or end-of-file condition in the file. If not, PL/SQL will raise the VALUE_ERROR
exception. The line terminator character is not included in the string passed into the buffer.

Exceptions

GET_LINE may raise any of the following exceptions:

NO_DATA_FOUND
VALUE_ERROR
UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.INVALID_OPERATION
UTL_FILE.READ_ERROR

Example

Since GET_LINE reads data only into a string variable, you will have to perform your own conversions to
local variables of the appropriate datatype if your file holds numbers or dates. Of course, you could call
this procedure and read data directly into string and numeric variables as well. In this case, PL/SQL will
be performing a runtime, implicit conversion for you. In many situations, this is fine. I generally
recommend that you avoid implicit conversions and perform your own conversion instead. This approach
more clearly documents the steps and dependencies. Here is an example:

DECLARE
fileID UTL_FILE.FILE_TYPE;
strbuffer VARCHAR2(100);
mynum NUMBER;

BEGIN
fileID := UTL_FILE.FOPEN ('/tmp', 'numlist.txt', 'R');
UTL_FILE.GET_LINE (fileID, strbuffer);
mynum := TO_NUMBER (strbuffer);

Parameter Description
file The file handle returned by a call to FOPEN
buffer The buffer into which the line of data is read

Page 23 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

END;
/

When GET_LINE attempts to read past the end of the file, the NO_DATA_FOUND exception is raised.
This is the same exception that is raised when you (a) execute an implicit (SELECT INTO) cursor that
returns no rows or (b) reference an undefined row of a PL/SQL (nested in PL/SQL8) table. If you are
performing more than one of these operations in the same PL/SQL block, remember that this same
exception can be caused by very different parts of your program.

Writing to Files

In contrast to the simplicity of reading from a file, UTL_FILE offers a number of different procedures you
can use to write to a file:

UTL_FILE.PUT
Puts a piece of data (string, number, or date) into a file in the current line.

UTL_FILE.NEW_LINE
Puts a newline or line termination character into the file at the current position.

UTL_FILE.PUT_LINE
Puts a string into a file, followed by a platform-specific line termination character.

UTL_FILE.PUTF
Puts up to five strings out to the file in a format based on a template string, similar to the printf
function in C.

You can use these procedures only if you have opened your file with modes W or A; if you opened the
file for read-only, the runtime engine will raise the UTL_FILE.INVALID_OPERATION exception.

Starting with Oracle 8.0.3, the maximum size of a file string is 32K; the limit for earlier versions is 1023
bytes. If you have longer strings, you must break them up into individual lines, perhaps using a special
continuation character to notify a post-processor to recombine those lines.

The UTL_FILE.PUT procedure

The PUT procedure puts data out to the specified open file. Here's the header for this procedure:

PROCEDURE UTL_FILE.PUT
(file IN UTL_FILE.FILE_TYPE,
buffer OUT VARCHAR2);

Parameters are summarized in the following table.

The PUT procedure adds the data to the current line in the opened file, but does not append a line

Parameter Description
file The file handle returned by a call to FOPEN

buffer The buffer containing the text to be written to the file; maximum size allowed is 32K for
Oracle 8.0.3 and above; for earlier versions, it is 1023 bytes

Page 24 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

terminator. You must use the NEW_LINE procedure to terminate the current line or use PUT_LINE to
write out a complete line with a line termination character.

Exceptions

PUT may raise any of the following exceptions:

UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.INVALID_OPERATION
UTL_FILE.WRITE_ERROR

The UTL_FILE.NEW_LINE procedure

The NEW_LINE procedure inserts one or more newline characters in the specified file. Here's the header
for the procedure:

PROCEDURE UTL_FILE.NEW_LINE
(file IN UTL_FILE.FILE_TYPE,
lines IN NATURAL := 1);

Parameters are summarized in the following table.

If you do not specify a number of lines, NEW_LINE uses the default value of 1, which places a newline
character (carriage return) at the end of the current line. So if you want to insert a blank line in your file,
execute the following call to NEW_LINE:

UTL_FILE.NEW_LINE (my_file, 2);

If you pass 0 or a negative number for lines, nothing is written into the file.

Exceptions

NEW_LINE may raise any of the following exceptions:

VALUE_ERROR
UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.INVALID_OPERATION
UTL_FILE.WRITE_ERROR

Example

If you frequently wish to add an end-of-line marker after you PUT data out to the file (see the PUT
procedure information), you might bundle two calls to UTL_FILE modules together, as follows:

PROCEDURE add_line (file_in IN UTL_FILE.FILE_TYPE, line_in IN VARCHAR2)
IS
BEGIN

UTL_FILE.PUT (file_in, line_in);

Parameter Description
file The file handle returned by a call to FOPEN
lines Number of lines to be inserted into the file

Page 25 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

UTL_FILE.NEW_LINE (file_in);
END;

By using add_line instead of PUT, you will not have to worry about remembering to call NEW_LINE to
finish off the line. Of course, you could also simply call the PUT_LINE procedure.

The UTL_FILE.PUT_LINE procedure

This procedure writes data to a file and then immediately appends a newline character after the text.
Here's the header for PUT_LINE:

PROCEDURE UTL_FILE.PUT_LINE
(file IN UTL_FILE.FILE_TYPE,
buffer IN VARCHAR2);

Parameters are summarized in the following table.

Before you can call UTL_FILE.PUT_LINE, you must have already opened the file.

Exceptions

PUT_LINE may raise any of the following exceptions:

UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.INVALID_OPERATION
UTL_FILE.WRITE_ERROR

Example

Here is an example of using PUT_LINE to dump the contents of the emp table to a file:

PROCEDURE emp2file
IS

fileID UTL_FILE.FILE_TYPE;
BEGIN

fileID := UTL_FILE.FOPEN ('/tmp', 'emp.dat', 'W');

/* Quick and dirty construction here! */
FOR emprec IN (SELECT * FROM emp)
LOOP

UTL_FILE.PUT_LINE
(TO_CHAR (emprec.empno) || ',' ||
emprec.ename || ',' ||
...
TO_CHAR (emprec.deptno));

END LOOP;

UTL_FILE.FCLOSE (fileID);
END;

Parameter Description
file The file handle returned by a call to FOPEN

buffer Text to be written to the file; maximum size allowed is 32K for Oracle 8.0. 3 and above; for
earlier versions, it is 1023 bytes

Page 26 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

A call to PUT_LINE is equivalent to a call to PUT followed by a call to NEW_LINE. It is also equivalent
to a call to PUTF with a format string of "%s\n" (see the description of PUTF in the next section).

The UTL_FILE.PUTF procedure

Like PUT, PUTF puts data into a file, but it uses a message format (hence, the "F" in "PUTF") to interpret
the different elements to be placed in the file. You can pass between one and five different items of data
to PUTF. Here's the specification:

PROCEDURE UTL_FILE.PUTF
(file IN FILE_TYPE
,format IN VARCHAR2
,arg1 IN VARCHAR2 DEFAULT NULL
,arg2 IN VARCHAR2 DEFAULT NULL
,arg3 IN VARCHAR2 DEFAULT NULL
,arg4 IN VARCHAR2 DEFAULT NULL
,arg5 IN VARCHAR2 DEFAULT NULL);

Parameters are summarized in the following table.

The format string allows you to substitute the argN values directly into the text written to the file. In
addition to "boilerplate" or literal text, the format string may contain the following patterns:

%s
Directs PUTF to put the corresponding item in the file. You can have up to five %s patterns in the
format string, since PUTF will take up to five items.

\n
Directs PUTF to put a newline character in the file. There is no limit to the number of \n patterns
you may include in a format string.

The %s formatters are replaced by the argument strings in the order provided. If you do not pass in
enough values to replace all of the formatters, then the %s is simply removed from the string before
writing it to the file.

Exceptions

UTL_FILE.PUTF may raise any of the following exceptions:

UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.INVALID_OPERATION
UTL_FILE.WRITE_ERROR

Example

The following example illustrates how to use the format string. Suppose you want the contents of the file

Parameter Description
file The file handle returned by a call to FOPEN
format The string that determines the format of the items in the file; see the following options
argN An optional argument string; up to five may be specified

Page 27 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

to look like this:

Employee: Steven Feuerstein
Soc Sec #: 123-45-5678
Salary: $1000

This single call to PUTF will accomplish the task:

UTL_FILE.PUTF
(file_handle, 'Employee: %s\nSoc Sec #: %s\nSalary: %s',
'Steven Feuerstein',
'123-45-5678',
TO_CHAR (:employee.salary, '$9999'));

If you need to write out more than five items of data, you can simply call PUTF twice consecutively to
finish the job, as shown here:

UTL_FILE.PUTF
(file_handle, '%s\n%s\n%s\n%s\n%s\n',
TO_DATE (SYSDATE, 'MM/DD/YYYY'),
TO_CHAR (:pet.pet_id),
:pet.name,
TO_DATE (:pet.birth_date, 'MM/DD/YYYY'),
:pet.owner);

UTL_FILE.PUTF
(file_handle, '%s\n%s\n',
:pet.bites_mailperson,
:pet.does_tricks);

The UTL_FILE.FFLUSH procedure

This procedure makes sure that all pending data for the specified file is written physically out to a file.
The header for FFLUSH is,

PROCEDURE UTL_FILE.FFLUSH (file IN UTL_FILE.FILE_TYPE);

where file is the file handle.

Your operating system probably buffers physical I/O to improve performance. As a consequence, your
program may have called one of the "put" procedures, but when you look at the file, you won't see your
data. UTL_FILE.FFLUSH comes in handy when you want to read the contents of a file before you have
closed that file. Typical scenarios include analyzing execution trace and debugging logs.

Exceptions

FFLUSH may raise any of the following exceptions:

UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.INVALID_OPERATION
UTL_FILE.WRITE_ERROR

Closing Files

Use the FCLOSE and FCLOSE_ALL procedures in closing files.

Page 28 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The UTL_FILE.FCLOSE procedure

Use FCLOSE to close an open file. The header for this procedure is,

PROCEDURE UTL_FILE.FCLOSE (file IN OUT FILE_TYPE);

where file is the file handle.

Notice that the argument to UTL_FILE.FCLOSE is an IN OUT parameter, because the procedure sets the
id field of the record to NULL after the file is closed.

If there is buffered data that has not yet been written to the file when you try to close it, UTL_FILE will
raise the WRITE_ERROR exception.

Exceptions

FCLOSE may raise any of the following exceptions:

UTL_FILE.INVALID_FILEHANDLE
UTL_FILE.WRITE_ERROR

The UTL_FILE.FCLOSE_ALL procedure

FCLOSE_ALL closes all of the opened files. The header for this procedure follows:

PROCEDURE UTL_FILE.FCLOSE_ALL;

This procedure will come in handy when you have opened a variety of files and want to make sure that
none of them are left open when your program terminates.

In programs in which files have been opened, you should also call FCLOSE_ALL in exception handlers
in programs. If there is an abnormal termination of the program, files will then still be closed.

EXCEPTION
WHEN OTHERS

THEN
UTL_FILE.FCLOSE_ALL;
... other clean up activities ...

END;

NOTE: When you close your files with the FCLOSE_ALL procedure, none of your file handles will be
marked as closed (the id field, in other words, will still be non-NULL). The result is that any calls to
IS_OPEN for those file handles will still return TRUE. You will not, however, be able to perform any
read or write operations on those files (unless you reopen them).

Exceptions

FCLOSE_ALL may raise the following exception:

UTL_FILE.WRITE_ERROR

Page 29 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

Tips on Using UTL_FILE

This section contains a variety of tips on using UTL_FILE to its full potential.

Handling file I/O errors

You may encounter a number of difficulties (and therefore raise exceptions) when working with operating
system files. The good news is that Oracle has predefined a set of exceptions specific to the UTL_FILE
package, such as UTL_FILE.INVALID_FILEHANDLE. The bad news is that these are all "user-defined
exceptions," meaning that if you call SQLCODE to see what the error is, you get a value of 1, regardless
of the exception. And a call to SQLERRM returns the less-than-useful string "User-Defined Exception."

To understand the problems this causes, consider the following program:

PROCEDURE file_action
IS

fileID UTL_FILE.FILE_TYPE;
BEGIN

fileID := UTL_FILE.FOPEN ('c:/tmp', 'lotsa.stf', 'R');
UTL_FILE.PUT_LINE (fileID, 'just the beginning');
UTL_FILE.FCLOSE (fileID);

END;

It is filled with errors, as you can see when I try to execute the program:

SQL> exec file_action
declare
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at "SYS.UTL_FILE", line 91
ORA-06512: at "SYS.UTL_FILE", line 146
ORA-06512: at line 4

But what error or errors? Notice that the only information you get is that it was an "unhandled user-
defined exception"--even though Oracle defined the exception!

The bottom line is that if you want to get more information out of the UTL_FILE-related errors in your
code, you need to add exception handlers designed explicitly to trap UTL_FILE exceptions and tell you
which one was raised. The following template exception section offers that capability. It includes an
exception handler for each UTL_FILE exception. The handler writes out the name of the exception and
then reraises the exception.

/* Filename on companion disk: fileexc.sql */

EXCEPTION
WHEN UTL_FILE.INVALID_PATH
THEN

DBMS_OUTPUT.PUT_LINE ('invalid_path'); RAISE;

WHEN UTL_FILE.INVALID_MODE
THEN

DBMS_OUTPUT.PUT_LINE ('invalid_mode'); RAISE;

WHEN UTL_FILE.INVALID_FILEHANDLE

Page 30 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

THEN
DBMS_OUTPUT.PUT_LINE ('invalid_filehandle'); RAISE;

WHEN UTL_FILE.INVALID_OPERATION
THEN

DBMS_OUTPUT.PUT_LINE ('invalid_operation'); RAISE;

WHEN UTL_FILE.READ_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('read_error'); RAISE;

WHEN UTL_FILE.WRITE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('write_error'); RAISE;

WHEN UTL_FILE.INTERNAL_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('internal_error'); RAISE;
END;

If I add this exception section to my file_action procedure, I get this message,

SQL> @temp
invalid_operation
declare
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception

which helps me realize that I am trying to write to a read-only file. So I change the file mode to "W" and
try again, only to receive the same error again! Additional analysis reveals that my file location is not
valid. It should be "C:\temp" instead of "C:/tmp". So why didn't I get a UTL_FILE.INVALID_PATH
exception? Who is to say? With those two changes made, file_action then ran without error.

I suggest that whenever you work with UTL_FILE programs, you include either all or the relevant part of
fileexc.sql. (See each program description earlier in this chapter to find out which exceptions each
program might raise.) Of course, you might want to change my template. You may not want to reraise the
exception. You may want to display other information. Change whatever you need to change--just
remember the basic rule that if you don't handle the UTL_FILE exception by name in the block in which
the error was raised, you won't be able to tell what went wrong.

Closing unclosed files

As a corollary to the last section on handling I/O errors, you must be very careful to close files when you
are done working with them, or when errors occur in your program. If not, you may sometimes have to
resort to UTL_FILE.FCLOSE_ALL to close all your files before you can get your programs to work
properly.

Suppose you open a file (and get a handle to that file) and then your program hits an error and fails.
Suppose further that you do not have an exception section, so the program simply fails. So let's say that
you fix the bug and rerun the program. Now it fails with UTL_FILE.INVALID_OPERATION. The
problem is that your file is still open--and you have lost the handle to the file, so you cannot explicitly
close just that one file.

Instead, you must now issue this command (here, from SQL*Plus):

Page 31 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

SQL> exec UTL_FILE.FCLOSE_ALL

With any luck, you won't close files that you wanted to be left open in your session. As a consequence, I
recommend that you always include calls to UTL_FILE.FCLOSE in each of your exception sections to
avoid the need to call FCLOSE_ALL and to minimize extraneous INVALID_OPERATION exceptions.

Here is the kind of exception section you should consider including in your programs. (I use the
PLVexc.recNstop handler from PL/Vision as an example of a high-level program to handle exceptions, in
this case requesting that the program "record and then stop.")

EXCEPTION
WHEN OTHRES
THEN

UTL_FILE.FCLOSE (ini_fileID);
UTL_FILE.FCLOSE (new_fileID);
PLVexc.recNstop;

END;

In other words, I close the two files I've been working with, and then handle the exception.

Combining locations and filenames

I wonder if anyone else out there in the PL/SQL world finds UTL_FILE as frustrating as I do. I am happy
that Oracle built the package, but I sure wish they'd given us more to work with. I am bothered by these
things:

 The need to separate my filename from the location. Most of the time when I work with files, those
two pieces are stuck together. With UTL_FILE, I have to split them apart.

 The lack of support for paths. It would be nice to not have to provide a file location and just let
UTL_FILE find my file for me.

This section shows you how to enhance UTL_FILE to allow you to pass in a "combo" filename: location
and name joined together, as we so often encounter them. The next section explains the steps for adding
path support to your manipulation of files with UTL_FILE.

If you are going to specify your file specification (location and name) in one string, what is the minimum
information needed in order to separate these two elements to pass to FOPEN? The delimiter used to
separate directories from filenames. In DOS (and Windows) that delimiter is "\". In UNIX it is "/". In
VAX/VMS it is "]". Seems to me that I just have to find the last occurrence of this delimiter in your string
and that will tell me where to break apart the string.

So to allow you to get around splitting up your file specification in your call to FOPEN, I can do the
following:

 Give you a way to tell me in advance the operating system delimiter for directories--and store that
value for use in future attempts to open files.

 Offer you a substitute FOPEN procedure that uses that delimiter.

Since I want to store that value for your entire session, I will need a package. (You can also use a database
table so that you do not have to specify this value each time you start up your application.) Here is the

Page 32 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

specification:

/* Filename on companion disk: onestring.spp */

CREATE OR REPLACE PACKAGE fileIO
IS

PROCEDURE setsepchar (str IN VARCHAR2);
FUNCTION sepchar RETURN VARCHAR2;

FUNCTION open (file IN VARCHAR2, filemode IN VARCHAR2)
RETURN UTL_FILE.FILE_TYPE;

END;
/

In other words, I set the separation character or delimiter with a call to fileIO.setsepchar, and I can
retrieve the current value with a call to the fileIO.sepchar function. Once I have that value, I can call
fileIO.open to open a file without having to split apart the location and name. I show an example of this
program in use here:

DECLARE
fid UTL_FILE.FILE_TYPE;

BEGIN
fileIO.setsepchar ('\');
fid := fileio.open ('c:\temp\newone.txt', 'w'));

END;
/

The body of this package is quite straightforward:

CREATE OR REPLACE PACKAGE BODY fileIO
IS

g_sepchar CHAR(1) := '/'; /* Unix is, after all, dominant. */

PROCEDURE setsepchar (str IN VARCHAR2)
IS
BEGIN

g_sepchar := NVL (str, '/');
END;

FUNCTION sepchar RETURN VARCHAR2
IS
BEGIN

RETURN g_sepchar;
END;

FUNCTION open (file IN VARCHAR2, filemode IN VARCHAR2)
RETURN UTL_FILE.FILE_TYPE

IS
v_loc PLS_INTEGER := INSTR (file, g_sepchar, -1);
retval UTL_FILE.FILE_TYPE;

BEGIN
RETURN UTL_FILE.FOPEN

(SUBSTR (file, 1, v_loc-1),
SUBSTR (file, v_loc+1),
filemode);

END;
END;
/

Page 33 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

Notice that when I call INSTR I pass -1 for the third argument. This negative value tells the built-in to
scan from the end of string backwards to the first occurrence of the specified character.

Adding support for paths

Why should I have to provide the directory name for my file each time I call FOPEN to read that file? It
would be so much easier to specify a path, a list of possible directories, and then just let UTL_FILE scan
the different directories in the specified order until the file is found.

Even though the notion of a path is not built into UTL_FILE, it is easy to add this feature. The structure of
the implementation is very similar to the package built to combine file locations and names. I will need a
package to receive and store the path, or list of directories. I will need an alternative open procedure that
uses the path instead of a provided location. Here is the package specification:

/* Filename on companion disk: filepath.spp */

CREATE OR REPLACE PACKAGE fileIO
IS

c_delim CHAR(1) := ';';

PROCEDURE setpath (str IN VARCHAR2);
FUNCTION path RETURN VARCHAR2;

FUNCTION open (file IN VARCHAR2, filemode IN VARCHAR2)
RETURN UTL_FILE.FILE_TYPE;

END;
/

I define the path delimiter as a constant so that a user of the package can see what he should use to
separate different directories in his path. I provide a procedure to set the path and a function to get the
path--but the variable containing the path is hidden away in the package body to protect its integrity.

Before exploring the implementation of this package, let's see how you would use these programs. The
following test script sets a path with two directories and then displays the first line of code in the file
containing the previous package:

/* Filename on companion disk: filepath.tst */

DECLARE
fID UTL_FILE.FILE_TYPE;
v_line VARCHAR2(2000);

BEGIN
fileio.setpath ('c:\temp;d:\oreilly\builtins\code');
fID := fileIO.open ('filepath.spp');
UTL_FILE.GET_LINE (fID, v_line);
DBMS_OUTPUT.PUT_LINE (v_line);
UTL_FILE.FCLOSE (fID);

END;
/

I include a trace message in the package (commented out on the companion disk) so that we can watch the
path-based open doing its work:

SQL> @filepath.tst
...looking in c:\temp

Page 34 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

...looking in d:\oreilly\builtins\code
CREATE OR REPLACE PACKAGE fileIO

It's nice having programs do your work for you, isn't it? Here is the implementation of the fileIO package
with path usage:

/* Filename on companion disk: filepath.spp */

CREATE OR REPLACE PACKAGE BODY fileIO
IS

g_path VARCHAR2(2000);

PROCEDURE setpath (str IN VARCHAR2)
IS
BEGIN

g_path := str;
END;

FUNCTION path RETURN VARCHAR2
IS
BEGIN

RETURN g_path;
END;

FUNCTION open (file IN VARCHAR2, filemode IN VARCHAR2)
RETURN UTL_FILE.FILE_TYPE

IS
/* Location of next path separator */
v_lastsep PLS_INTEGER := 1;
v_sep PLS_INTEGER := INSTR (g_path, c_delim);
v_dir VARCHAR2(500);
retval UTL_FILE.FILE_TYPE;

BEGIN
/* For each directory in the path, attempt to open the file. */
LOOP

BEGIN
IF v_sep = 0
THEN

v_dir := SUBSTR (g_path, v_lastsep);
ELSE

v_dir := SUBSTR (g_path, v_lastsep, v_sep - v_lastsep);
END IF;
retval := UTL_FILE.FOPEN (v_dir, file, 'R');
EXIT;

EXCEPTION
WHEN OTHERS
THEN

IF v_sep = 0
THEN

RAISE;
ELSE

v_lastsep := v_sep + 1;
v_sep := INSTR (g_path, c_delim, v_sep+1);

END IF;
END;

END LOOP;
RETURN retval;

END;
END;
/

Page 35 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The logic in this fileio.open is a little bit complicated, because I need to parse the semicolon-delimited
list. The v_sep variable contains the location in the path of the next delimiter. The v_lastsep variable
contains the location of the last delimiter. I have to include special handling for recognizing when I am at
the last directory in the path (v_sep equals 0). Notice that I do not hard-code the semi-colon into this
program. Instead, I reference the c_delim constant.

The most important implementation detail is that I place the call to FOPEN inside a loop. With each
iteration of the loop body, I extract a directory from the path. Once I have the next directory to search, I
call the FOPEN function to see if I can read the file. If I am able to do so successfully, I will reach the
next line of code inside my loop, which is an EXIT statement: I am done and can leave. This drops me
down to the RETURN statement to send back the handle to the file.

If I am unable to read the file in that directory, UTL_FILE raises an exception. Notice that I have placed
the entire body of my loop inside its own anonymous block. This allows me to trap the open failure and
process it. If I am on my last directory (no more delimiters, as in v_sep equals 0), I will simply reraise the
exception from UTL_FILE. This will cause the loop to terminate, and then end the function execution as
well. Since the fileIO.open does not have its own exception section, the error will be propagated out of the
function unhandled. Even with a path, I was unable to locate the file. If, however, there are more
directories, I set my start and end points for the next SUBSTR from the path and go back to the top of the
loop so that FOPEN can try again.

If you do decide to use utilities like the path-based open shown previously, you should consider the
following:

 Combine the logic in filepath.spp with onestring.spp (a version of open that lets you pass the
location and name in a single string). I should be able to override the path by providing a location;
the version shown in this section assumes that the filename never has a location in it.

 Allow users to add a directory to the path without having to concatenate it to a string with a
semicolon between them. Why not build a procedure called fileIO.adddir that does the work for the
user and allows an application to modify the path at runtime?

You closed what?

You might run into some interesting behavior with the IS_OPEN function if you treat your file handles as
variables. You are not likely to do this, but I did, so I thought I would pass on my findings to you.

In the following script, I define two file handles. I then open a file, assigning the handle record generated
by FOPEN to fileID1. I immediately assign that record to fileID2. They now both have the same record
contents. I then close the file by passing fileID2 to FCLOSE and check the status of the file afterwards.
Finally, I assign a value of NULL to the id field of fileID1 and call IS_OPEN again.

DECLARE
fileID1 UTL_FILE.FILE_TYPE;
fileID2 UTL_FILE.FILE_TYPE;

BEGIN
fileID1 := UTL_FILE.FOPEN ('c:\temp', 'newdata.txt', 'W');
fileID2 := fileID1;
UTL_FILE.FCLOSE (fileID2);

IF UTL_FILE.IS_OPEN (fileid1)
THEN

DBMS_OUTPUT.PUT_LINE ('still open');

Page 36 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

END IF;

fileid1.id := NULL;
IF NOT UTL_FILE.IS_OPEN (fileid1)
THEN

DBMS_OUTPUT.PUT_LINE ('now closed');
END IF;

END;
/

Let's run the script and check out the results:

SQL> @temp
still open
now closed

We can conclude from this test that the IS_OPEN function returns TRUE if the id field of a
UTL_FILE.FILE_TYPE record is NULL. It doesn't check the status of the file with the operating system.
It is a check totally internal to UTL_FILE.

This will not cause any problems as long as (a) you don't muck around with the id field of your file handle
records and (b) you are consistent with your use of file handles. In other words, if you assign one file
record to another, use that new record for all operations. Don't go back to using the original.

UTL_FILE Examples

So you've got a file (or a dozen files) out on disk, filled with all sorts of good information you want to
access from your PL/SQL-based application. You will find yourself performing the same kinds of
operations against those files over and over again.

After you work your way through this book, I hope that you will recognize almost without conscious
thought that you do not want to repeatedly build the open, read, and close operations for each of these
files, for each of the various recurring operations. Instead, you will instantly say to yourself, "Hot diggity!
This is an opportunity to build a set of standard, generic modules that will help manage my files."

This section contains a few of my candidates for the first contributions to a UTL_FILE toolbox of
utilities. I recommend that you consider building a single package to contain all of these utilities.[4]

Enhancing UTL_FILE.GET_LINE

The GET_LINE procedure is simple and straightforward. It gets the next line from the file. If the pointer
to the file is already located at the last line of the file, UTL_FILE.GET_LINE does not return data, but
instead raises the NO_DATA_FOUND exception. Whenever you write programs using GET_LINE, you
will therefore need to handle this exception. Let's explore the different ways you can do this.

The following example uses a loop to read the contents of a file into a PL/SQL table (whose type
definition, tabpkg.names_tabtype, has been declared previously):

/* Filename on companion disk: file2tab.sp */

CREATE OR REPLACE PACKAGE tabpkg
IS

TYPE names_tabtype IS TABLE OF VARCHAR2(100)
INDEX BY BINARY_INTEGER;

Page 37 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

END;
/
CREATE OR REPLACE PROCEDURE file_to_table

(loc_in IN VARCHAR2, file_in IN VARCHAR2,
table_in IN OUT tabpkg.names_tabtype)

IS
/* Open file and get handle right in declaration */
names_file UTL_FILE.FILE_TYPE := UTL_FILE.FOPEN (loc_in, file_in, 'R');
/* Counter used to store the Nth name. */
line_counter INTEGER := 1;

BEGIN
LOOP

UTL_FILE.GET_LINE (names_file, table_in(line_counter));
line_counter := line_counter + 1;

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND
THEN

UTL_FILE.FCLOSE (names_file);
END;
/

The file_to_table procedure uses an infinite loop to read through the contents of the file. Notice that there
is no EXIT statement within the loop to cause the loop to terminate. Instead I rely on the fact that the
UTL_FILE package raises a NO_DATA_FOUND exception once it goes past the end-of-file marker and
short-circuits the loop by transferring control to the exception section. The exception handler then traps
that exception and closes the file.

I am not entirely comfortable with this approach. I don't like to code infinite loops without an EXIT
statement; the termination condition is not structured into the loop itself. Furthermore, the end-of-file
condition is not really an exception; every file, after all, must end at some point.

I believe that a better approach to handling the end-of-file condition is to build a layer of code around
GET_LINE that immediately checks for end-of-file and returns a Boolean value (TRUE or FALSE). The
get_nextline procedure shown here embodies this principle.

/* Filename on companion disk: getnext.sp */

PROCEDURE get_nextline
(file_in IN UTL_FILE.FILE_TYPE,
line_out OUT VARCHAR2,
eof_out OUT BOOLEAN)

IS
BEGIN

UTL_FILE.GET_LINE (file_in, line_out);
eof_out := FALSE;

EXCEPTION
WHEN NO_DATA_FOUND
THEN

line_out := NULL;
eof_out := TRUE;

END;

The get_nextline procedure accepts an already assigned file handle and returns two pieces of information:
the line of text (if there is one) and a Boolean flag (set to TRUE if the end-of-file is reached, FALSE
otherwise). Using get_nextline, I can now read through a file with a loop that has an EXIT statement.

Page 38 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

My file_to_table procedure will look like the following after adding get_nextline:

/* Filename on companion disk: fil2tab2.sp */

PROCEDURE file_to_table
(loc_in IN VARCHAR2, file_in IN VARCHAR2,
table_in IN OUT names_tabtype)

IS
/* Open file and get handle right in declaration */
names_file CONSTANT UTL_FILE.FILE_TYPE :=

UTL_FILE.FOPEN (loc_in, file_in, 'R');

/* counter used to create the Nth name. */
line_counter INTEGER := 1;

end_of_file BOOLEAN := FALSE;
BEGIN

WHILE NOT end_of_file
LOOP

get_nextline (names_file, table_in(line_counter), end_of_file);
line_counter := line_counter + 1;

END LOOP;
UTL_FILE.FCLOSE (names_file);

END;

With get_nextline, I no longer treat end-of-file as an exception. I read a line from the file until I am done,
and then I close the file and exit. This is, I believe, a more straightforward and easily understood program.

Creating a file

A common way to use files does not involve the contents of the file as much as a confirmation that the file
does in fact exist. You can use the two modules defined next to create a file and then check to see if that
file exists. Notice that when I create a file in this type of situation, I do not even bother to return the
handle to the file. The purpose of the first program, create_file, is simply to make sure that a file with the
specified name (and optional line of text) is out there on disk.

/* Filename on companion disk: crefile.sp */

PROCEDURE create_file
(loc_in IN VARCHAR2, file_in IN VARCHAR2, line_in IN VARCHAR2 := NULL)

IS
file_handle UTL_FILE.FILE_TYPE;

BEGIN
/*
|| Open the file, write a single line and close the file.
*/
file_handle := UTL_FILE.FOPEN (loc_in, file_in, 'W');
IF line_in IS NOT NULL
THEN

UTL_FILE.PUT_LINE (file_handle, line_in);
ELSE

UTL_FILE.PUT_LINE
(file_handle, 'I make my disk light blink, therefore I am.');

END IF;
UTL_FILE.FCLOSE (file_handle);

END;

Testing for a file's existence

Page 39 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The second program checks to see if a file exists. Notice that it creates a local procedure to handle the
close logic (which is called both in the body of the function and in the exception section).

/* Filename on companon disk: filexist.sf */

CCREATE OR REPLACE FUNCTION file_exists
(loc_in IN VARCHAR2,
file_in IN VARCHAR2,
close_in IN BOOLEAN := FALSE)

RETURN BOOLEAN
IS

file_handle UTL_FILE.FILE_TYPE;
retval BOOLEAN;

PROCEDURE closeif IS
BEGIN

IF close_in AND UTL_FILE.IS_OPEN (file_handle)
THEN

UTL_FILE.FCLOSE (file_handle);
END IF;

END;
BEGIN

/* Open the file. */
file_handle := UTL_FILE.FOPEN (loc_in, file_in, 'R');

/* Return the result of a check with IS_OPEN. */
retval := UTL_FILE.IS_OPEN (file_handle);

closeif;

RETURN retval;
EXCEPTION

WHEN OTHERS
THEN

closeif;
RETURN FALSE;

END;
/

Searching a file for a string

Because I found the INSTR function to be so useful, I figured that this same kind of operation would also
really come in handy with operating system files. The line_with_text function coming up shortly returns
the line number in a file containing the specified text. The simplest version of such a function would have
a specification like this:

FUNCTION line_with_text
(loc_in IN VARCHAR2, file_in IN VARCHAR2, text_in IN VARCHAR2)

RETURN INTEGER

In other words, given a location, a filename, and a chunk of text, find the first line in the file that contains
the text. You could call this function as follows:

IF line_with_text ('h:\pers', 'names.vp', 'Hanubi') > 0
THEN

MESSAGE ('Josephine Hanubi is a vice president!');
END IF;

Page 40 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

The problem with this version of line_with_text is its total lack of vision. What if I want to find the
second occurrence in the file? What if I need to start my search from the tenth line? What if I want to
perform a case-insensitive search? None of these variations are supported.

I urge you strongly to think through all the different ways a utility like line_with_text might be used
before you build it. Don't just build for today's requirement. Anticipate what you will need tomorrow and
next week as well.

For line_with_text, a broader vision would yield a specification like this:

FUNCTION line_with_text
(loc_in IN VARCHAR2,
file_in IN VARCHAR2,
text_in IN VARCHAR2,
occurrence_in IN INTEGER := 1,
start_line_in IN INTEGER := 1,
end_line_in IN INTEGER := 0,
ignore_case_in IN BOOLEAN := TRUE)

RETURN INTEGER

Wow! That's a lot more parameter passing. Let's take a look at the kind of flexibility we gain from these
additional arguments. First, the following table provides a description of each parameter.

Notice that all the new parameters, occurrence_in through ignore_case_in, have default values, so I can
call this function in precisely the same way and with the same results as the first, limited version:

IF line_with_text ('names.vp', 'Hanubi') > 0
THEN

MESSAGE ('Josephine Hanubi is a vice president!');
END IF;

Now, however, I can also do so much more:

 Confirm that the role assigned to this user is SUPERVISOR:

line_with_text ('c:\temp', 'config.usr', 'ROLE=SUPERVISOR')

 Find the second occurrence of DELETE starting with the fifth line:

Parameter Description
loc_in The location of the file on the operating system
file_in The name of the file to be opened
text_in The chunk of text to be searched for in each line of the file

occurrence_in The number of times the text should be found in distinct lines in the file before the
function returns the line number

srart_line_in The first line in the file from which the function should start its search

end_line_in The last line in the file to which the function should continue its search; if zero, then
search through end of file

ignore_case_in Indicates whether the case of the file contents and text_in should be ignored when
checking for its presence in the line

Page 41 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

line_with_text ('/tmp', 'commands.dat', 'delete', 2, 5)

 Verify that the third line contains a terminal type specification:

line_with_text ('g:\apps\user\', 'setup.cfg', 'termtype=', 1, 3, 3)

Here is the code for the line_with_text function:

/* Filename on companion disk: linetext.sf */

CREATE OR REPLACE FUNCTION line_with_text
(loc_in IN VARCHAR2,
file_in IN VARCHAR2,
text_in IN VARCHAR2,
occurrence_in IN INTEGER := 1,
start_line_in IN INTEGER := 1,
end_line_in IN INTEGER := 0,
ignore_case_in IN BOOLEAN := TRUE)

RETURN INTEGER
/*
|| An "INSTR" for operating system files. Returns the line number of
|| a file in which a text string was found.
*/
IS

/* Handle to the file. Only will open if arguments are valid. */
file_handle UTL_FILE.FILE_TYPE;

/* Holds a line of text from the file. */
line_of_text VARCHAR2(1000);

text_loc INTEGER;
found_count INTEGER := 0;

/* Boolean to determine if there are more values to read */
no_more_lines BOOLEAN := FALSE;

/* Function return value */
return_value INTEGER := 0;

BEGIN
/* Assert valid arguments. If any fail, return NULL. */
IF loc_in IS NULL OR

file_in IS NULL OR
text_in IS NULL OR
occurrence_in <= 0 OR
start_line_in < 1 OR
end_line_in < 0

THEN
return_value := NULL;

ELSE
/* All arguments are fine. Open and read through the file. */
file_handle := UTL_FILE.FOPEN (loc_in, file_in, 'R');
LOOP

/* Get next line and exit if at end of file. */
get_nextline (file_handle, line_of_text, no_more_lines);
EXIT WHEN no_more_lines;

/* Have another line from file. */
return_value := return_value + 1;

Page 42 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

/* If this line is between the search range... */
IF (return_value BETWEEN start_line_in AND end_line_in) OR

(return_value >= start_line_in AND end_line_in = 0)
THEN

/* Use INSTR to see if text is present. */
IF NOT ignore_case_in
THEN

text_loc := INSTR (line_of_text, text_in);
ELSE

text_loc := INSTR (UPPER (line_of_text), UPPER (text_in));
END IF;

/* If text location is positive, have a match. */
IF text_loc > 0
THEN

/* Increment found counter. Exit if matches request. */
found_count := found_count + 1;
EXIT WHEN found_count = occurrence_in;

END IF;
END IF;

END LOOP;
UTL_FILE.FCLOSE (file_handle);

END IF;

IF no_more_lines
THEN

/* read through whole file without success. */
return_value := NULL;

END IF;

RETURN return_value;
END;

Getting the nth line from a file

What if you want to get a specific line from a file? The following function takes a filename and a line
number and returns the text found on that line:

/* Filename on companion disk: nthline.sf */

CREATE OR REPLACE FUNCTION get_nth_line
(loc_in IN VARCHAR2, file_in IN VARCHAR2, line_num_in IN INTEGER)

IS
/* Handle to the file. Only will open if arguments are valid. */
file_handle UTL_FILE.FILE_TYPE;

/* Count of lines read from the file. */
line_count INTEGER := 0;

/* Boolean to determine if there are more values to read */
no_more_lines BOOLEAN := FALSE;

/* Function return value */
return_value VARCHAR2(1000) := NULL;

BEGIN
/* Need a file name and a positive line number. */
IF file_in IS NOT NULL AND line_num_in > 0
THEN

/* All arguments are fine. Open and read through the file. */
file_handle := UTL_FILE.FOPEN (loc_in, file_in, 'R');

Page 43 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

LOOP
/* Get next line from file. */
get_nextline (file_handle, return_value, no_more_lines);

/* Done if no more lines or if at the requested line. */
EXIT WHEN no_more_lines OR line_count = line_num_in - 1;

/* Otherwise, increment counter and read another line. */
line_count := line_count + 1;

END LOOP;
UTL_FILE.FCLOSE (file_handle);

END IF;

/* Either NULL or contains last line read from file. */
RETURN return_value;

END;

1. As this book is going to press, the following PL/SQL debuggers are now available: SQL-Station
Debugger from Platinum Technology; SQL Navigator from Quest; Xpediter/SQL from Compuware; and
Procedure Builder from Oracle Corporation.

2. A version of PL/Vision is available through a free download from the www.revealnet.com site.

3. Available through a free download from the www.revealnet.com site.

4. You will find an example of such a package in Chapter 13 of Advanced Oracle PL/SQL Programming
with Packages.

Back to: Oracle Built-in Packages

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

Page 44 of 44Oracle Built-in Packages: Chapter 6. Generating Output from PL/SQL Programs

6/17/2005http://www.oreilly.com/catalog/oraclebip/chapter/ch06.html

