
4 Application Programming

4.1 PL/SQL

4.1.1 Introduction

The development of database applications typically requires language constructs similar to those
that can be found in programming languages such as C, C++, or Pascal. These constructs are
necessary in order to implement complex data structures and algorithms. A major restriction
of the database language SQL, however, is that many tasks cannot be accomplished by using
only the provided language elements.

PL/SQL (Procedural Language/SQL) is a procedural extension of Oracle-SQL that offers lan-
guage constructs similar to those in imperative programming languages. PL/SQL allows users
and designers to develop complex database applications that require the usage of control struc-
tures and procedural elements such as procedures, functions, and modules.

The basic construct in PL/SQL is a block. Blocks allow designers to combine logically related
(SQL-) statements into units. In a block, constants and variables can be declared, and variables
can be used to store query results. Statements in a PL/SQL block include SQL statements,
control structures (loops), condition statements (if-then-else), exception handling, and calls of
other PL/SQL blocks.

PL/SQL blocks that specify procedures and functions can be grouped into packages. A package
is similar to a module and has an interface and an implementation part. Oracle offers several
predefined packages, for example, input/output routines, file handling, job scheduling etc. (see
directory $ORACLE HOME/rdbms/admin).

Another important feature of PL/SQL is that it offers a mechanism to process query results
in a tuple-oriented way, that is, one tuple at a time. For this, cursors are used. A cursor
basically is a pointer to a query result and is used to read attribute values of selected tuples
into variables. A cursor typically is used in combination with a loop construct such that each
tuple read by the cursor can be processed individually.

In summary, the major goals of PL/SQL are to

• increase the expressiveness of SQL,

• process query results in a tuple-oriented way,

• optimize combined SQL statements,

• develop modular database application programs,

• reuse program code, and

• reduce the cost for maintaining and changing applications.

26

4.1.2 Structure of PL/SQL-Blocks

PL/SQL is a block-structured language. Each block builds a (named) program unit, and
blocks can be nested. Blocks that build a procedure, a function, or a package must be named.
A PL/SQL block has an optional declare section, a part containing PL/SQL statements, and an
optional exception-handling part. Thus the structure of a PL/SQL looks as follows (brackets
[] enclose optional parts):

[<Block header>]
[declare

<Constants>
<Variables>
<Cursors>
<User defined exceptions>]

begin
<PL/SQL statements>
[exception

<Exception handling>]
end;

The block header specifies whether the PL/SQL block is a procedure, a function, or a package.
If no header is specified, the block is said to be an anonymous PL/SQL block. Each PL/SQL
block again builds a PL/SQL statement. Thus blocks can be nested like blocks in conventional
programming languages. The scope of declared variables (i.e., the part of the program in which
one can refer to the variable) is analogous to the scope of variables in programming languages
such as C or Pascal.

4.1.3 Declarations

Constants, variables, cursors, and exceptions used in a PL/SQL block must be declared in the
declare section of that block. Variables and constants can be declared as follows:

<variable name> [constant] <data type> [not null] [:= <expression>];

Valid data types are SQL data types (see Section 1.1) and the data type boolean. Boolean
data may only be true, false, or null. The not null clause requires that the declared variable
must always have a value different from null. <expression> is used to initialize a variable.
If no expression is specified, the value null is assigned to the variable. The clause constant
states that once a value has been assigned to the variable, the value cannot be changed (thus
the variable becomes a constant). Example:

declare
hire date date; /* implicit initialization with null */
job title varchar2(80) := ’Salesman’;
emp found boolean; /* implicit initialization with null */
salary incr constant number(3,2) := 1.5; /* constant */
. . .

begin . . . end;

27

Instead of specifying a data type, one can also refer to the data type of a table column (so-called
anchored declaration). For example, EMP.Empno%TYPE refers to the data type of the column
Empno in the relation EMP. Instead of a single variable, a record can be declared that can store a
complete tuple from a given table (or query result). For example, the data type DEPT%ROWTYPE

specifies a record suitable to store all attribute values of a complete row from the table DEPT.
Such records are typically used in combination with a cursor. A field in a record can be accessed
using <record name>.<column name>, for example, DEPT.Deptno.

A cursor declaration specifies a set of tuples (as a query result) such that the tuples can be
processed in a tuple-oriented way (i.e., one tuple at a time) using the fetch statement. A cursor
declaration has the form

cursor <cursor name> [(<list of parameters>)] is <select statement>;

The cursor name is an undeclared identifier, not the name of any PL/SQL variable. A parameter
has the form <parameter name> <parameter type>. Possible parameter types are char,
varchar2, number, date and boolean as well as corresponding subtypes such as integer.
Parameters are used to assign values to the variables that are given in the select statement.

Example: We want to retrieve the following attribute values from the table EMP in a tuple-
oriented way: the job title and name of those employees who have been hired
after a given date, and who have a manager working in a given department.

cursor employee cur (start date date, dno number) is
select JOB, ENAME from EMP E where HIREDATE > start date

and exists (select ∗ from EMP

where E.MGR = EMPNO and DEPTNO = dno);

If (some) tuples selected by the cursor will be modified in the PL/SQL block, the clause for
update[(<column(s)>)] has to be added at the end of the cursor declaration. In this case
selected tuples are locked and cannot be accessed by other users until a commit has been
issued. Before a declared cursor can be used in PL/SQL statements, the cursor must be
opened, and after processing the selected tuples the cursor must be closed. We discuss the
usage of cursors in more detail below.

Exceptions are used to process errors and warnings that occur during the execution of PL/SQL
statements in a controlled manner. Some exceptions are internally defined, such as ZERO DIVIDE.
Other exceptions can be specified by the user at the end of a PL/SQL block. User defined ex-
ceptions need to be declared using <name of exception> exception. We will discuss exception
handling in more detail in Section 4.1.5

4.1.4 Language Elements

In addition to the declaration of variables, constants, and cursors, PL/SQL offers various lan-
guage constructs such as variable assignments, control structures (loops, if-then-else), procedure
and function calls, etc. However, PL/SQL does not allow commands of the SQL data definition
language such as the create table statement. For this, PL/SQL provides special packages.

28

Furthermore, PL/SQL uses a modified select statement that requires each selected tuple to be
assigned to a record (or a list of variables).

There are several alternatives in PL/SQL to a assign a value to a variable. The most simple
way to assign a value to a variable is

declare
counter integer := 0;
. . .

begin
counter := counter + 1;

Values to assign to a variable can also be retrieved from the database using a select statement

select <column(s)> into <matching list of variables>
from <table(s)> where <condition>;

It is important to ensure that the select statement retrieves at most one tuple ! Otherwise
it is not possible to assign the attribute values to the specified list of variables and a run-
time error occurs. If the select statement retrieves more than one tuple, a cursor must be used
instead. Furthermore, the data types of the specified variables must match those of the retrieved
attribute values. For most data types, PL/SQL performs an automatic type conversion (e.g.,
from integer to real).

Instead of a list of single variables, a record can be given after the keyword into. Also in this
case, the select statement must retrieve at most one tuple !

declare
employee rec EMP%ROWTYPE;
max sal EMP.SAL%TYPE;

begin
select EMPNO, ENAME, JOB, MGR, SAL, COMM, HIREDATE, DEPTNO

into employee rec

from EMP where EMPNO = 5698;
select max(SAL) into max sal from EMP;
. . .

end;

PL/SQL provides while-loops, two types of for-loops, and continuous loops. Latter ones
are used in combination with cursors. All types of loops are used to execute a sequence of
statements multiple times. The specification of loops occurs in the same way as known from
imperative programming languages such as C or Pascal.

A while-loop has the pattern

[<< <label name> >>]
while <condition> loop

<sequence of statements>;
end loop [<label name>] ;

29

A loop can be named. Naming a loop is useful whenever loops are nested and inner loops are
completed unconditionally using the exit <label name>; statement.

Whereas the number of iterations through a while loop is unknown until the loop completes,
the number of iterations through the for loop can be specified using two integers.

[<< <label name> >>]
for <index> in [reverse] <lower bound>..<upper bound> loop

<sequence of statements>
end loop [<label name>] ;

The loop counter <index> is declared implicitly. The scope of the loop counter is only the
for loop. It overrides the scope of any variable having the same name outside the loop. Inside
the for loop, <index> can be referenced like a constant. <index> may appear in expressions,
but one cannot assign a value to <index>. Using the keyword reverse causes the iteration to
proceed downwards from the higher bound to the lower bound.

Processing Cursors: Before a cursor can be used, it must be opened using the open statement

open <cursor name> [(<list of parameters>)] ;

The associated select statement then is processed and the cursor references the first selected
tuple. Selected tuples then can be processed one tuple at a time using the fetch command

fetch <cursor name> into <list of variables>;

The fetch command assigns the selected attribute values of the current tuple to the list of
variables. After the fetch command, the cursor advances to the next tuple in the result set.
Note that the variables in the list must have the same data types as the selected values. After
all tuples have been processed, the close command is used to disable the cursor.

close <cursor name>;

The example below illustrates how a cursor is used together with a continuous loop:

declare
cursor emp cur is select ∗ from EMP;
emp rec EMP%ROWTYPE;
emp sal EMP.SAL%TYPE;

begin
open emp cur;
loop

fetch emp cur into emp rec;
exit when emp cur%NOTFOUND;
emp sal := emp rec.sal;
<sequence of statements>

end loop;
close emp cur;
. . .

end;

30

Each loop can be completed unconditionally using the exit clause:

exit [<block label>] [when <condition>]

Using exit without a block label causes the completion of the loop that contains the exit state-
ment. A condition can be a simple comparison of values. In most cases, however, the condition
refers to a cursor. In the example above, %NOTFOUND is a predicate that evaluates to false if the
most recent fetch command has read a tuple. The value of <cursor name>%NOTFOUND is null
before the first tuple is fetched. The predicate evaluates to true if the most recent fetch failed
to return a tuple, and false otherwise. %FOUND is the logical opposite of %NOTFOUND.

Cursor for loops can be used to simplify the usage of a cursor:

[<< <label name> >>]
for <record name> in <cursor name>[(<list of parameters>)] loop

<sequence of statements>
end loop [<label name>];

A record suitable to store a tuple fetched by the cursor is implicitly declared. Furthermore,
this loop implicitly performs a fetch at each iteration as well as an open before the loop is
entered and a close after the loop is left. If at an iteration no tuple has been fetched, the loop
is automatically terminated without an exit.

It is even possible to specify a query instead of <cursor name> in a for loop:

for <record name> in (<select statement>) loop
<sequence of statements>

end loop;

That is, a cursor needs not be specified before the loop is entered, but is defined in the select
statement.

Example:

for sal rec in (select SAL + COMM total from EMP) loop
. . . ;

end loop;

total is an alias for the expression computed in the select statement. Thus, at each iteration
only one tuple is fetched. The record sal rec, which is implicitly defined, then contains only
one entry which can be accessed using sal rec.total. Aliases, of course, are not necessary if
only attributes are selected, that is, if the select statement contains no arithmetic operators
or aggregate functions.

For conditional control, PL/SQL offers if-then-else constructs of the pattern

if <condition> then <sequence of statements>
[elsif] <condition> then <sequence of statements>
. . .
[else] <sequence of statements> end if ;

31

Starting with the first condition, if a condition yields true, its corresponding sequence of state-
ments is executed, otherwise control is passed to the next condition. Thus the behavior of this
type of PL/SQL statement is analogous to if-then-else statements in imperative programming
languages.

Except data definition language commands such as create table, all types of SQL statements
can be used in PL/SQL blocks, in particular delete, insert, update, and commit. Note
that in PL/SQL only select statements of the type select <column(s)> into are allowed, i.e.,
selected attribute values can only be assigned to variables (unless the select statement is used
in a subquery). The usage of select statements as in SQL leads to a syntax error. If update or
delete statements are used in combination with a cursor, these commands can be restricted to
currently fetched tuple. In these cases the clause where current of<cursor name> is added
as shown in the following example.

Example: The following PL/SQL block performs the following modifications: All employees
having ’KING’ as their manager get a 5% salary increase.

declare
manager EMP.MGR%TYPE;
cursor emp cur (mgr no number) is

select SAL from EMP

where MGR = mgr no

for update of SAL;
begin

select EMPNO into manager from EMP
where ENAME = ’KING’;
for emp rec in emp cur(manager) loop

update EMP set SAL = emp rec.sal ∗ 1.05
where current of emp cur;

end loop;
commit;

end;

Remark: Note that the record emp rec is implicitly defined. We will discuss another version of
this block using parameters in Section 4.1.6.

4.1.5 Exception Handling

A PL/SQL block may contain statements that specify exception handling routines. Each error
or warning during the execution of a PL/SQL block raises an exception. One can distinguish
between two types of exceptions:

• system defined exceptions
• user defined exceptions (which must be declared by the user in the declaration part of a

block where the exception is used/implemented)

32

System defined exceptions are always automatically raised whenever corresponding errors or
warnings occur. User defined exceptions, in contrast, must be raised explicitly in a sequence
of statements using raise <exception name>. After the keyword exception at the end of a
block, user defined exception handling routines are implemented. An implementation has the
pattern

when <exception name> then <sequence of statements>;

The most common errors that can occur during the execution of PL/SQL programs are handled
by system defined exceptions. The table below lists some of these exceptions with their names
and a short description.

Exception name Number Remark
CURSOR ALREADY OPEN ORA-06511 You have tried to open a cursor which is

already open
INVALID CURSOR ORA-01001 Invalid cursor operation such as fetching

from a closed cursor
NO DATA FOUND ORA-01403 A select . . . into or fetch statement re-

turned no tuple
TOO MANY ROWS ORA-01422 A select . . . into statement returned more

than one tuple
ZERO DIVIDE ORA-01476 You have tried to divide a number by 0

Example:

declare
emp sal EMP.SAL%TYPE;
emp no EMP.EMPNO%TYPE;
too high sal exception;

begin
select EMPNO, SAL into emp no, emp sal

from EMP where ENAME = ’KING’;
if emp sal ∗ 1.05 > 4000 then raise too high sal

else update EMP set SQL . . .
end if ;
exception

when NO DATA FOUND – – no tuple selected
then rollback;

when too high sal then insert into high sal emps values(emp no);
commit;

end;

After the keyword when a list of exception names connected with or can be specified. The last
when clause in the exception part may contain the exception name others. This introduces
the default exception handling routine, for example, a rollback.

33

If a PL/SQL program is executed from the SQL*Plus shell, exception handling routines may
contain statements that display error or warning messages on the screen. For this, the procedure
raise application error can be used. This procedure has two parameters <error number>
and <message text>. <error number> is a negative integer defined by the user and must range
between -20000 and -20999. <error message> is a string with a length up to 2048 characters.
The concatenation operator “||” can be used to concatenate single strings to one string. In order
to display numeric variables, these variables must be converted to strings using the function
to char. If the procedure raise application error is called from a PL/SQL block, processing
the PL/SQL block terminates and all database modifications are undone, that is, an implicit
rollback is performed in addition to displaying the error message.

Example:

if emp sal ∗ 1.05 > 4000
then raise application error(-20010, ’Salary increase for employee with Id ’

|| to char(Emp no) || ’ is too high’);

4.1.6 Procedures and Functions

PL/SQL provides sophisticated language constructs to program procedures and functions as
stand-alone PL/SQL blocks. They can be called from other PL/SQL blocks, other procedures
and functions. The syntax for a procedure definition is

create [or replace] procedure <procedure name> [(<list of parameters>)] is
<declarations>

begin
<sequence of statements>
[exception

<exception handling routines>]
end [<procedure name>];

A function can be specified in an analogous way

create [or replace] function <function name> [(<list of parameters>)]
return <data type> is
. . .

The optional clause or replace re-creates the procedure/function. A procedure can be deleted
using the command drop procedure <procedure name> (drop function <function name>).
In contrast to anonymous PL/SQL blocks, the clause declare may not be used in proce-
dure/function definitions.

Valid parameters include all data types. However, for char, varchar2, and number no length
and scale, respectively, can be specified. For example, the parameter number(6) results in a
compile error and must be replaced by number. Instead of explicit data types, implicit types
of the form %TYPE and %ROWTYPE can be used even if constrained declarations are referenced.
A parameter is specified as follows:

<parameter name> [IN | OUT | IN OUT] <data type> [{ := | DEFAULT} <expression>]

34

The optional clauses IN, OUT, and IN OUT specify the way in which the parameter is used.
The default mode for a parameter is IN. IN means that the parameter can be referenced inside
the procedure body, but it cannot be changed. OUT means that a value can be assigned to
the parameter in the body, but the parameter’s value cannot be referenced. IN OUT allows
both assigning values to the parameter and referencing the parameter. Typically, it is sufficient
to use the default mode for parameters.

Example: The subsequent procedure is used to increase the salary of all employees who work
in the department given by the procedure’s parameter. The percentage of the salary increase
is given by a parameter, too.

create procedure raise salary(dno number, percentage number DEFAULT 0.5) is
cursor emp cur (dept no number) is

select SAL from EMP where DEPTNO = dept no

for update of SAL;
empsal number(8);

begin
open emp cur(dno); - - Here dno is assigned to dept no

loop
fetch emp cur into empsal;
exit when emp cur%NOTFOUND;
update EMP set SAL = empsal ∗ ((100 + percentage)/100)
where current of emp cur;

end loop;
close emp cur;
commit;

end raise salary;

This procedure can be called from the SQL*Plus shell using the command

execute raise salary(10, 3);

If the procedure is called only with the parameter 10, the default value 0.5 is assumed as
specified in the list of parameters in the procedure definition. If a procedure is called from a
PL/SQL block, the keyword execute is omitted.

Functions have the same structure as procedures. The only difference is that a function returns
a value whose data type (unconstrained) must be specified.

Example:

create function get dept salary(dno number) return number is
all sal number;

begin
all sal := 0;
for emp sal in (select SAL from EMP where DEPTNO = dno

and SAL is not null) loop

35

all sal := all sal + emp sal.sal;
end loop;
return all sal;

end get dept salary;

In order to call a function from the SQL*Plus shell, it is necessary to first define a vari-
able to which the return value can be assigned. In SQL*Plus a variable can be defined us-
ing the command variable <variable name> <data type>;, for example, variable salary

number. The above function then can be called using the command execute :salary :=
get dept salary(20); Note that the colon “:” must be put in front of the variable.

Further information about procedures and functions can be obtained using the help command
in the SQL*Plus shell, for example, help [create] function, help subprograms, help stored
subprograms.

4.1.7 Packages

It is essential for a good programming style that logically related blocks, procedures, and func-
tions are combined into modules, and each module provides an interface which allows users
and designers to utilize the implemented functionality. PL/SQL supports the concept of mod-
ularization by which modules and other constructs can be organized into packages. A package
consists of a package specification and a package body. The package specification defines the
interface that is visible for application programmers, and the package body implements the
package specification (similar to header- and source files in the programming language C).

Below a package is given that is used to combine all functions and procedures to manage
information about employees.

create package manage_employee as -- package specification

function hire_emp (name varchar2, job varchar2, mgr number, hiredate date,

sal number, comm number default 0, deptno number)

return number;

procedure fire_emp (emp_id number);

procedure raise_sal (emp_id number, sal_incr number);

end manage_employee;

create package body manage_employee as

function hire_emp (name varchar2, job varchar2, mgr number, hiredate date,

sal number, comm number default 0, deptno number)

return number is

-- Insert a new employee with a new employee Id

new_empno number(10);

begin

select emp_sequence.nextval into new_empno from dual;

36

insert into emp values(new_empno, name, job, mgr, hiredate,

sal, comm, deptno);

return new_empno;

end hire_emp;

procedure fire_emp(emp_id number) is

-- deletes an employee from the table EMP

begin

delete from emp where empno = emp_id;

if SQL%NOTFOUND then -- delete statement referred to invalid emp_id

raise_application_error(-20011, ’Employee with Id ’ ||

to_char(emp_id) || ’ does not exist.’);

end if;

end fire_emp;

procedure raise_sal(emp_id number, sal_incr number) is

-- modify the salary of a given employee

begin

update emp set sal = sal + sal_incr

where empno = emp_id;

if SQL%NOTFOUND then

raise_application_error(-20012, ’Employee with Id ’ ||

to_char(emp_id) || ’ does not exist’);

end if;

end raise_sal;

end manage_employee;

Remark: In order to compile and execute the above package, it is necessary to create first the
required sequence (help sequence):

create sequence emp sequence start with 8000 increment by 10;

A procedure or function implemented in a package can be called from other procedures and
functions using the statement <package name>.<procedure name>[(<list of parameters>)].
Calling such a procedure from the SQL*Plus shell requires a leading execute.

Oracle offers several predefined packages and procedures that can be used by database users
and application developers. A set of very useful procedures is implemented in the package
DBMS OUTPUT. This package allows users to display information to their SQL*Plus session’s
screen as a PL/SQL program is executed. It is also a very useful means to debug PL/SQL
programs that have been successfully compiled, but do not behave as expected. Below some of
the most important procedures of this package are listed:

37

Procedure name Remark
DBMS OUTPUT.ENABLE enables output
DBMS OUTPUT.DISABLE disables output
DBMS OUTPUT.PUT(<string>) appends (displays) <string> to output

buffer
DBMS OUTPUT.PUT LINE(<string>) appends <string> to output buffer and

appends a new-line marker
DBMS OUTPUT.NEW LINE displays a new-line marker

Before strings can be displayed on the screen, the output has to be enabled either using the
procedure DBMS OUTPUT.ENABLE or using the SQL*Plus command set serveroutput on (before
the procedure that produces the output is called).

Further packages provided by Oracle are UTL FILE for reading and writing files from PL/SQL
programs, DBMS JOB for job scheduling, and DBMS SQL to generate SQL statements dynamically,
that is, during program execution. The package DBMS SQL is typically used to create and
delete tables from within PL/SQL programs. More packages can be found in the directory
$ORACLE HOME/rdbms/admin.

4.1.8 Programming in PL/SQL

Typically one uses an editor such as emacs or vi to write a PL/SQL program. Once a program
has been stored in a file <name> with the extension .sql, it can be loaded into SQL*Plus
using the command @<name>. It is important that the last line of the file contains a slash
“/”.

If the procedure, function, or package has been successfully compiled, SQL*Plus displays the
message PL/SQL procedure successfully completed. If the program contains errors, these
are displayed in the format ORA-n <message text>, where n is a number and <message text> is
a short description of the error, for example, ORA-1001 INVALID CURSOR. The SQL*Plus com-
mand show errors [<function|procedure|package|package body|trigger> <name>] displays all
compilation errors of the most recently created or altered function (or procedure, or package
etc.) in more detail. If this command does not show any errors, try select ∗ from USER ERRORS.

Under the UNIX shell one can also use the command oerr ORA n to get information of the
following form:

error description
Cause: Reason for the error
Action: Suggested action

38

4.2 Embedded SQL and Pro*C

The query language constructs of SQL described in the previous sections are suited for formulat-
ing ad-hoc queries, data manipulation statements and simple PL/SQL blocks in simple, inter-
active tools such as SQL*Plus. Many data management tasks, however, occur in sophisticated
engineering applications and these tasks are too complex to be handled by such an interactive
tool. Typically, data are generated and manipulated in computationally complex application
programs that are written in a Third-Generation-Language (3GL), and which, therefore, need
an interface to the database system. Furthermore, a majority of existing data-intensive en-
gineering applications are written previously using an imperative programming language and
now want to make use of the functionality of a database system, thus requiring an easy to use
programming interface to the database system. Such an interface is provided in the form of
Embedded SQL, an embedding of SQL into various programming languages, such as C, C++,
Cobol, Fortran etc. Embedded SQL provides application programmers a suitable means to
combine the computing power of a programming language with the database manipulation and
management capabilities of the declarative query language SQL.

Since all these interfaces exhibit comparable functionalities, in the following we describe the
embedding of SQL in the programming language C. For this, we base our discussion on the
Oracle interface to C, called Pro*C. The emphasis in this section is placed on the description
of the interface, not on introducing the programming language C.

4.2.1 General Concepts

Programs written in Pro*C and which include SQL and/or PL/SQL statements are precom-
piled into regular C programs using a precompiler that typically comes with the database
management software (precompiler package). In order to make SQL and PL/SQL statements
in a Proc*C program (having the suffix .pc) recognizable by the precompiler, they are always
preceded by the keywords EXEC SQL and end with a semicolon “;”. The Pro*C precompiler
replaces such statements with appropriate calls to functions implemented in the SQL runtime
library. The resulting C program then can be compiled and linked using a normal C compiler
like any other C program. The linker includes the appropriate Oracle specific libraries. Fig-
ure 1 summarizes the steps from the source code containing SQL statements to an executable
program.

4.2.2 Host and Communication Variables

As it is the case for PL/SQL blocks, also the first part of a Pro*C program has a declare section.
In a Pro*C program, in a declare section so-called host variables are specified. Host variables
are the key to the communication between the host program and the database. Declarations
of host variables can be placed wherever normal C variable declarations can be placed. Host
variables are declared according to the C syntax. Host variables can be of the following data
types:

39

Host
Program

Precompiler

Program

Editor

C−Compiler

Object−
Program Linker

Program Development

Program including SQL and PL/SQL commands
(<program>.pc)

‘pure’ C−Program including libraries (.h)
(<program>.c)

cc, gcc or g++

C Standard−LibrariesOracle Run−Time Library

Program

Translates SQL and PL/SQL commands into function calls

Source

executable

Figure 1: Translation of a Pro*C Program

char <Name> single character
char <Name>[n] array of n characters
int integer
float floating point
VARCHAR<Name>[n] variable length strings

VARCHAR2 is converted by the Pro*C precompiler into a structure with an n-byte character
array and a 2-bytes length field. The declaration of host variables occurs in a declare section
having the following pattern:

EXEC SQL BEGIN DECLARE SECTION

<Declaration of host variables>

/* e.g., VARCHAR userid[20]; */
/* e.g., char test ok; */

EXEC SQL END DECLARE SECTION

In a Pro*C program at most one such a declare section is allowed. The declaration of cursors
and exceptions occurs outside of such a declare section for host variables. In a Pro*C program
host variables referenced in SQL and PL/SQL statements must be prefixed with a colon “:”.
Note that it is not possible to use C function calls and most of the pointer expressions as host
variable references.

2Note: all uppercase letters; varchar2 is not allowed!

40

4.2.3 The Communication Area

In addition to host language variables that are needed to pass data between the database and
C program (and vice versa), one needs to provide some status variables containing program
runtime information. The variables are used to pass status information concerning the database
access to the application program so that certain events can be handled in the program properly.
The structure containing the status variables is called SQL Communication Area or SQLCA,
for short, and has to be included after the declare section using the statement

EXEC SQL INCLUDE SQLCA.H

In the variables defined in this structure, information about error messages as well as program
status information is maintained:

struct sqlca

{

/* ub1 */ char sqlcaid[8];

/* b4 */ long sqlabc;

/* b4 */ long sqlcode;

struct

{

/* ub2 */ unsigned short sqlerrml;

/* ub1 */ char sqlerrmc[70];

} sqlerrm;

/* ub1 */ char sqlerrp[8];

/* b4 */ long sqlerrd[6];

/* ub1 */ char sqlwarn[8];

/* ub1 */ char sqlext[8];

};

The fields in this structure have the following meaning:

sqlcaid Used to identify the SQLCA, set to “SQLCA”
sqlabc Holds the length of the SQLCA structure
sqlcode Holds the status code of the most recently executed SQL (PL/SQL) statement

0 =̂ No error, statement successfully completed
> 0 =̂ Statement executed and exception detected. Typical situations are where

fetch or select into returns no rows.
< 0 =̂ Statement was not executed because of an error; transaction should

be rolled back explicitly.
sqlerrm Structure with two components

sqlerrml: length of the message text in sqlerrmc, and
sqlerrmc: error message text (up to 70 characters) corresponding to the error

code recorded in sqlcode

sqlerrp Not used

41

sqlerrd Array of binary integers, has 6 elements:
sqlerrd[0],sqlerrd[1],sqlerrd[3],sqlerrd[6] not used; sqlerrd[2] =
number of rows processed by the most recent SQL statement; sqlerrd[4] =
offset specifying position of most recent parse error of SQL statement.

sqlwarn Array with eight elements used as warning (not error!) flags. Flag is set by
assigning it the character ‘W’.
sqlwarn[0]: only set if other flag is set
sqlwarn[1]: if truncated column value was assigned to a host variable
sqlwarn[2]: null column is not used in computing an aggregate function
sqlwarn[3]: number of columns in select is not equal to number of host

variables specified in into
sqlwarn[4]: if every tuple was processed by an update or delete statement

without a where clause
sqlwarn[5]: procedure/function body compilation failed because of

a PL/SQL error
sqlwarn[6] and sqlwarn[7]: not used

sqlext not used

Components of this structure can be accessed and verified during runtime, and appropriate
handling routines (e.g., exception handling) can be executed to ensure a correct behavior of the
application program. If at the end of the program the variable sqlcode contains a 0, then the
execution of the program has been successful, otherwise an error occurred.

4.2.4 Exception Handling

There are two ways to check the status of your program after executable SQL statements which
may result in an error or warning: (1) either by explicitly checking respective components
of the SQLCA structure, or (2) by doing automatic error checking and handling using the
WHENEVER statement. The complete syntax of this statement is

EXEC SQL WHENEVER <condition> <action>;

By using this command, the program then automatically checks the SQLCA for <condition>
and executes the given <action>. <condition> can be one of the following:

• SQLERROR: sqlcode has a negative value, that is, an error occurred

• SQLWARNING: In this case sqlwarn[0] is set due to a warning

• NOT FOUND: sqlcode has a positive value, meaning that no row was found that satisfies
the where condition, or a select into or fetch statement returned no rows

<action> can be

• STOP: the program exits with an exit() call, and all SQL statements that have not
been committed so far are rolled back

42

• CONTINUE: if possible, the program tries to continue with the statement following the
error resulting statement

• DO <function>: the program transfers processing to an error handling function named
<function>

• GOTO <label>: program execution branches to a labeled statement (see example)

4.2.5 Connecting to the Database

At the beginning of Pro*C program, more precisely, the execution of embedded SQL or PL/SQL
statements, one has to connect to the database using a valid Oracle account and password.
Connecting to the database occurs trough the embedded SQL statement

EXEC SQL CONNECT :<Account> IDENTIFIED BY :<Password>.

Both <Account> and <Password> are host variables of the type VARCHAR and must
be specified and handled respectively (see also the sample Pro*C program in Section 4.2.7).
<Account> and <Password> can be specified in the Pro*C program, but can also be entered
at program runtime using, e.g., the C function scanf.

4.2.6 Commit and Rollback

Before a program is terminated by the c exit function and if no error occurred, database
modifications through embedded insert, update, and delete statements must be committed.
This is done by using the embedded SQL statement

EXEC SQL COMMIT WORK RELEASE;

If a program error occurred and previous non-committed database modifications need to be
undone, the embedded SQL statement

EXEC SQL ROLLBACK WORK RELEASE;

has to be specified in the respective error handling routine of the Pro*C program.

4.2.7 Sample Pro*C Program

The following Pro*C program connects to the database using the database account scott/tiger.
The database contains information about employees and departments (see the previous exam-
ples used in this tutorial). The user has to enter a salary which then is used to retrieve all
employees (from the relation EMP) who earn more than the given minimum salary. Retrieving
and processing individual result tuples occurs through using a PL/SQL cursor in a C while-loop.

/* Declarations */

#include <stdio.h>

#include <string.h>

43

#include <stdlib.h>

/* Declare section for host variables */

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR userid[20];

VARCHAR passwd[20];

int empno;

VARCHAR ename[15];

float sal;

float min_sal;

EXEC SQL END DECLARE SECTION;

/* Load SQL Communication Area */

EXEC SQL INCLUDE SQLCA.H;

main() /* Main program */

{ int retval;

/* Catch errors automatically and go to error handling rountine */

EXEC SQL WHENEVER SQLERROR GOTO error;

/* Connect to Oracle as SCOTT/TIGER; both are host variables */

/* of type VARCHAR; Account and Password are specified explicitly */

strcpy(userid.arr,"SCOTT"); /* userid.arr := "SCOTT" */

userid.len=strlen(userid.arr); /* uid.len := 5 */

strcpy(passwd.arr,"SCOTT"); /* passwd.arr := "TIGER" */

passwd.len=strlen(passwd.arr); /* passwd.len := 5 */

EXEC SQL CONNECT :userid IDENTIFIED BY :passwd;

printf("Connected to ORACLE as: %s\n\n", userid.arr);

/* Enter minimum salary by user */

printf("Please enter minimum salary > ");

retval = scanf("%f", &min_sal);

if(retval != 1) {

printf("Input error!!\n");

EXEC SQL ROLLBACK WORK RELEASE;

/* Disconnect from ORACLE */

exit(2); /* Exit program */

}

/* Declare cursor; cannot occur in declare section! */

EXEC SQL DECLARE EMP_CUR CURSOR FOR

SELECT EMPNO,ENAME,SAL FROM EMP

44

WHERE SAL>=:min_sal;

/* Print Table header, run cursor through result set */

printf("Empployee-ID Employee-Name Salary \n");

printf("--------------- ----------------- -------\n");

EXEC SQL OPEN EMP_CUR;

EXEC SQL FETCH EMP_CUR INTO :empno, :ename, :sal; /* Fetch 1.tuple */

while(sqlca.sqlcode==0) { /* are there more tuples ? */

ename.arr[ename.len] = ’\0’; /* "End of String" */

printf("%15d %-17s %7.2f\n",empno,ename.arr,sal);

EXEC SQL FETCH EMP_CUR INTO :empno, :ename, :sal; /* get next tuple */

}

EXEC SQL CLOSE EMP_CUR;

/* Disconnect from database and terminate program */

EXEC SQL COMMIT WORK RELEASE;

printf("\nDisconnected from ORACLE\n");

exit(0);

/* Error Handling: Print error message */

error: printf("\nError: %.70s \n",sqlca.sqlerrm.sqlerrmc);

EXEC SQL ROLLBACK WORK RELEASE;

exit(1);

}

45

