
Oracle9i PL/SQL:
A Developer’s Guide

BULUSU LAKSHMAN

049XFM 10/16/02 4:30 PM Page i

Oracle9i PL/SQL: A Developer’s Guide

Copyright © 2003 by Bulusu Lakshman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-049-X

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Martin Reid
Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Simon Hayes, Karen Watterson,
John Zukowski
Managing Editor: Grace Wong
Project Manager and Developmental Editor: Tracy Brown Collins
Copy Editors: Nicole LeClerc, Ami Knox
Production Editor: Laura Cheu
Compositor and Artist: Impressions Book and Journal Services, Inc.
Cover Designer: Kurt Krames
Indexer: Valerie Robbins
Marketing Manager: Stephanie Rodriguez
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

049XFM 10/16/02 4:30 PM Page ii

CHAPTER 2

Cursors

THINK OF THIS CHAPTER as Cursors 101 and 201 combined. I start with a quick
overview of cursors and how to use them in PL/SQL. Next, I cover the methods
for processing multirow resultsets with cursors. Then I tackle cursor variables
and their uses, and I wrap up with a discussion of Oracle9i’s new cursor
expressions.

I illustrate the concept of cursors, cursor variables, and cursor expressions by
taking into account an organizational hierarchy system. The case study I present
uses the data model shown in Figure 2-1. The schema objects to be created are
listed in Appendix A.

Introducing Cursors

As described in Chapter 1, PL/SQL interacts with SQL by combining SQL state-
ments with PL/SQL constructs inside a PL/SQL block. Cursors are one more
PL/SQL feature that exhibits interaction with SQL by using SQL within PL/SQL.
A cursor is a handle to a work area that holds the resultset of a multirow SQL
query. Oracle opens a work area to hold the resultset of multirow queries. A cur-
sor gives this work area a name and can be used to process the rows returned by
the multirow query.

33

Hrc

Org

Org SiteSite

Sec Hrc AuditSec Hrc

Sec Hrc Org

Figure 2-1. The data model of an organizational hierarchy system

049XCh02 10/17/02 12:58 PM Page 33

There are two types of cursors: explicit and implicit. The cursors defined ear-
lier for handling multirow resultsets are called explicit cursors. Implicit cursors
are those defined by Oracle and are associated with single-row SELECT . . . INTO
statements and INSERT, UPDATE, and DELETE statements. These statements are
also executed within the context of a work area and the Oracle PL/SQL engine
automatically opens a cursor that points to this work area. This work area identi-
fies the rows to be modified with the INSERT, UPDATE, DELETE, or SELECT . . .
INTO statement. There’s no need to declare the cursor explicitly, hence the name
“implicit.”

This section begins with a discussion of explicit cursors and then moves on
to cover implicit cursors in detail.

Explicit Cursors

In an explicit cursor’s definition, the cursor name is explicitly associated with
a SELECT statement. This is done using the PL/SQL CURSOR . . . IS SELECT . . .
statement. Explicit cursors can be associated with a SELECT statement only.

You can use an explicit cursor to process multirow queries, including queries
that fetch one row.

Defining an Explicit Cursor

You declare an explicit cursor using the CURSOR . . . IS SELECT . . . statement in
PL/SQL. Here’s the syntax:

CURSOR cursor_name IS

SELECT_statement ;

where cursor_name is the name of the cursor and SELECT_statement is any valid
SQL SELECT statement without the INTO clause.

When you use a PL/SQL block, you need to declare an explicit cursor in the
declaration section after the DECLARE keyword. The following is an example of
an explicit cursor:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_hrc_descr VARCHAR2(20);

34

Chapter 2

049XCh02 10/17/02 12:58 PM Page 34

v_org_short_name VARCHAR2(30);

BEGIN

/* . . . <Process the cursor resultset> . . . */

null;

END;

/

When naming a cursor, you should follow the standard PL/SQL variable
naming conventions. Other declarations can follow or precede a CURSOR decla-
ration. The order of declaring cursors and other variables is immaterial. The
SELECT statement associated with a cursor can’t contain an INTO clause. It may,
however, have GROUP BY and ORDER clauses, as well as joins and set operators
such as UNION, INTERSECT, and MINUS. The scope of a cursor is the PL/SQL
block in which it is defined or any of its nested blocks. Enclosing (outer) blocks
can’t reference a cursor defined within them.

Using an Explicit Cursor

Once you’ve defined a cursor, you can use it for processing the rows contained in
the resultset. Here are the steps:

1. Open the cursor.

2. Fetch the results into a PL/SQL record or individual PL/SQL variables.

3. Close the cursor.

There are two ways to use an explicit cursor once it has been defined: using
OPEN, FETCH, and CLOSE, and using a cursor FOR LOOP. You can do this in the
executable section of a PL/SQL block in between BEGIN and END.

Using OPEN, FETCH, and CLOSE

After declaring the cursor, you have to open it as follows:

OPEN cursor_name;

where cursor_name is the name of the declared cursor.
Here’s an example that illustrates opening the cursor csr_org declared

previously:

35

Cursors

049XCh02 10/17/02 12:58 PM Page 35

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_hrc_descr VARCHAR2(20);

v_org_short_name VARCHAR2(30);

BEGIN

OPEN csr_org;

/* . . . <Process the cursor resultset> . . . */

null;

END;

/

Once opened, the resultset returned by the associated SELECT statement is
determined and fixed. This is often termed the active set of rows. Also, the cursor
pointer points to the first row in the active set.

36

Chapter 2

CAUTION Don’t open an already opened cursor. This raises
the predefined PL/SQL exception CURSOR_ALREADY_OPEN.

The next step is to fetch the cursor into PL/SQL variables. This retrieves indi-
vidual rows of data into the PL/SQL variables for processing. You fetch a cursor
using the FETCH statement, which has four forms. Here’s the syntax:

FETCH cursor_name INTO var1, var2, . . . , varN;

or

FETCH cursor_name INTO cursor_name%ROWTYPE;

or

FETCH cursor_name INTO table_name%ROWTYPE;

or

FETCH cursor_name INTO record_name;

049XCh02 10/17/02 12:58 PM Page 36

Here, var1, var2, and varN represent PL/SQL variables having data types
identical to the cursor SELECT columns. cursor_name%ROWTYPE represents
a PL/SQL record type with attributes implicitly defined that are identical to the
cursor SELECT. In this case, the record type needs to be defined explicitly.
table_name%ROWTYPE represents a similar record type, but one that has attri-
butes as the column names of the table identified by table_name. In this case, the
columns in table_name should exactly match in number and data type the
columns in the cursor SELECT statement. Lastly, record_name is a variable of
a PL/SQL record type that’s explicitly defined. In this case also, the number and
data types of the individual attributes of the record should be a one-to-one
match with the columns in the cursor SELECT.

Here’s an example that extends the previous example of csr_org to fetching
rows:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_hrc_descr VARCHAR2(20);

v_org_short_name VARCHAR2(30);

BEGIN

OPEN csr_org;

FETCH csr_org INTO v_hrc_descr, v_org_short_name;

-- This fetch fetches the first row in the active set.

null;

END;

/

Here, the first row in the active set is fetched into two PL/SQL variables named
v_hrc_descr and v_org_short_name. Once the first row in the active set is fetched,
it’s up to the program to process the data in whatever manner desired.

Alternatively, you can declare a record variable of type
cursor_name%ROWTYPE and then fetch the cursor into it. This is recommended
and eliminates the use of multiple variables. Here’s an example:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

37

Cursors

049XCh02 10/17/02 12:58 PM Page 37

v_org_rec csr_org%ROWTYPE;

BEGIN

OPEN csr_org;

FETCH csr_org INTO v_org_rec;

-- This fetch fetches the first row in the active set.

null;

END;

/

In this case, you can access the individual columns in the record type using the
same column names as in the CURSOR SELECT statement.

Note that a single FETCH fetches only one row at a time. The first FETCH
statement fetches the very first row, the second FETCH statement fetches the sec-
ond row, and so on. To fetch all the rows, you have to use a single FETCH
statement in a loop. Each iteration of FETCH advances the cursor pointer to the
next row. Once fetched, the individual rows can be processed in whatever man-
ner desired. You can fetch sets of rows at one time by repeating the definition of
the FETCH statement. For example, to fetch two rows at a time, just repeat the
FETCH statement twice.

38

Chapter 2

TIP A single FETCH always fetches only one row (the cur-
rent row) from the active set. To fetch multiple rows, use the
FETCH statement in a loop.

You can fetch a cursor only after you open it. The number and data types of the
individual variables should exactly match the columns list in the cursor SELECT
statement. In the case when the cursor is fetched into a record type (either
cursor_name%ROWTYPE, table_name%ROWTYPE, or record_name), the number
and data type of each attribute in the record should exactly match the columns list
of the cursor SELECT statement.

CAUTION Don’t fetch from an already closed cursor. Doing
so results in an “ORA-01001: invalid cursor” error or an
“ORA-01002: Fetch out of sequence” error.

049XCh02 10/17/02 12:58 PM Page 38

Once the processing of the rows is completed, you have to close the cursor.
This frees the resources allocated to the cursor, such as the memory required for
storing the active set. You close a cursor using the CLOSE statement. Here’s the
syntax:

CLOSE cursor_name;

39

Cursors

TIP Always fetch into a record type of
cursor_name%ROWTYPE, or, at least fetch into a record type
compatible with the cursor SELECT rather than into indi-
vidual variables. This is less error-prone and also improves
program readability.

TIP You should always close an opened cursor. If you don’t
close it, it may result in a “too many open cursors” error. The
maximum number of open cursors is determined by the
init.ora initialization parameter open_cursors. The default
value for this parameter in Oracle9i is 50. Don’t close an
already closed cursor.

To determine if a cursor is already open or not, you have to use cursor attri-
butes. I discuss cursor attributes in the section “Explicit Cursor Attributes.”

Here’s a complete example of using the csr_org cursor involving all the steps
previously described:

DECLARE

/* Declare a cursor explicitly */

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

TIP The CLOSE statement should always appear after the
FETCH statement. When you use a loop to fetch the rows
from a cursor, you should insert the CLOSE statement after
you close the loop. Otherwise, it results in an illegal fetch.

049XCh02 10/17/02 12:58 PM Page 39

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

/* Open the cursor */

OPEN csr_org;

/* Format headings */

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

/* Fetch from the cursor resultset in a loop and display the results

*/

LOOP

FETCH csr_org INTO v_org_rec;

EXIT WHEN csr_org%NOTFOUND;

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_rec.org_short_name,30,’ ‘));

END LOOP;

/* CLose the cursor */

CLOSE csr_org;

END;

/

Here’s the output of this program:

Organization Details with Hierarchy

Hierarchy Organization
------------------- --------------------------
CEO/COO Office of CEO ABC Inc.
CEO/COO Office of CEO DataPro Inc.
CEO/COO Office of CEO XYZ Inc.
VP Office of VP Mktg ABC Inc.
VP Office of VP Sales ABC Inc.
VP Office of VP Tech ABC Inc.

PL/SQL procedure successfully completed.

40

Chapter 2

049XCh02 10/17/02 12:58 PM Page 40

The code in this program opens the cursor, fetches the rows one by one until
no more rows are found, displays the information in a formatted manner, and
then closes the cursor. The one thing to note here is the EXIT condition for the
cursor loop. This is determined by a cursor attribute %NOTFOUND, which is
defined in the statement

EXIT WHEN csr_org%NOTFOUND;

%NOTFOUND returns a boolean true when the last row has been fetched
and there are no more rows left in the active set. This tells PL/SQL to stop execut-
ing the fetch loop and exit the cursor loop. Fetching past the last row results in an
“ORA-01002: Fetch out of sequence” error.

41

Cursors

TIP Always check for the attribute %NOTFOUND imme-
diately after the FETCH statement to terminate a cursor
FETCH loop normally. When you use multiple FETCH state-
ments to fetch a row set at a time, specify the EXIT WHEN
cursor_name%NOTFOUND condition immediately after
every FETCH statement. This ensures avoidance of the
ORA-01002 error.

The program in this example used a simple LOOP . . . END LOOP to fetch
rows from a cursor. This serves the purpose very well. However, a WHILE LOOP
can replace the simple LOOP if desired. Using a WHILE LOOP, however, demands
greater caution in using the FETCH statement and specifying the EXIT condition
for the loop. Here are the rules of the thumb to keep in mind when you use
WHILE LOOP for FETCHing:

• FETCH once before the beginning of the LOOP.

• Specify a condition of cursor_name%FOUND as the condition of the
WHILE LOOP.

• Inside the loop, process the row first and then include a second FETCH
after the processing logic.

• Don’t specify an EXIT condition after the FETCH statement inside the
LOOP, such as EXIT WHEN . . .

049XCh02 10/17/02 12:58 PM Page 41

Here’s the same example presented previously rewritten using a WHILE
fetch loop:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

OPEN csr_org;

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FETCH csr_org INTO v_org_rec;

WHILE (csr_org%FOUND) LOOP

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_rec.org_short_name,30,’ ‘));

FETCH csr_org INTO v_org_rec;

END LOOP;

CLOSE csr_org;

END;

/

The following points are worth noting:

• The first FETCH before the beginning of the WHILE LOOP is necessary to
make sure the condition for the WHILE LOOP evaluates to TRUE. You do
this by using the %FOUND cursor attribute, which evaluates to TRUE if at
least one row is present in the active set.

• If the active set contains no rows, the WHILE LOOP isn’t executed. This is in
contrast to a simple LOOP . . . END LOOP, where the control enters the
loop even before the first fetch.

• The processing of the data fetched by the first FETCH (outside the WHILE
LOOP) is done first and then the successive row(s) are fetched.

• There is no need for an EXIT condition after the second FETCH (inside
the loop).

42

Chapter 2

049XCh02 10/17/02 12:58 PM Page 42

Using a Cursor FOR LOOP

You can also use a declared cursor using a cursor FOR LOOP instead of explicitly
using OPEN, FETCH, and CLOSE. A cursor FOR LOOP takes care of cursor pro-
cessing using an implicit OPEN FETCH and CLOSE. Here are the steps:

1. Declare a cursor FOR LOOP. Here’s an example:

FOR idx in cursor_name LOOP

. . .

. . .

END LOOP;

Here, cursor_name is the name of the cursor and idx is the index of the
cursor FOR LOOP and is of type cursor_name%ROWTYPE.

43

Cursors

TIP Using a cursor FOR LOOP doesn’t make the cursor an
implicit cursor. It’s still an explicit cursor and has to be
declared explicitly.

2. Process the data in the active set. Here’s the example of the csr_org cur-
sor modified using a cursor FOR LOOP:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

BEGIN

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FOR idx IN csr_org LOOP

dbms_output.put_line(rpad(idx.hrc_descr,20,’ ‘)||’ ‘||

049XCh02 10/17/02 12:58 PM Page 43

rpad(idx.org_short_name,30,’ ‘));

END LOOP;

END;

/

The following points are worth noting:

• The index of the cursor FOR LOOP isn’t declared. It’s implicitly declared by
the PL/SQL compiler as type csr_org%ROWTYPE.

44

Chapter 2

TIP Never declare the index of a cursor FOR LOOP.

• You can access the individual columns in the cursor SELECT using the “.”
(dot) notation of accessing record type attributes by succeeding the index
name with a dot followed by the column name in the cursor SELECT.

• There is no need to OPEN, FETCH, and CLOSE the cursor.

TIP An important use of the cursor FOR LOOP is when
you process all the rows in a cursor unconditionally. This is
a recommended practice and is in contrast to the conven-
tional method of OPEN, FETCH, and CLOSE, which is used
to process some of the rows or to skip some rows on a certain
condition.

Avoiding Declaration of an Explicit Cursor with a Cursor
FOR LOOP

In the earlier example, although the cursor FOR LOOP was used, the cursor
csr_org was still declared in the declaration section of the PL/SQL block.
However, you can wholly specify the cursor SELECT in the specification of the
cursor FOR LOOP itself instead of an explicit declaration. This improves readabil-
ity and is less error-prone. Here’s the csr_org cursor rewritten in this way:

049XCh02 10/17/02 12:58 PM Page 44

BEGIN

FOR idx in (SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code ORDER by 2) LOOP

dbms_output.put_line(rpad(idx.hrc_descr,20,’ ‘)||’ ‘||

rpad(idx.org_short_name,30,’ ‘));

END LOOP;

END;

/

Specifying a cursor as presented in this code still comes under the explicit
category, as you have to specify the cursor SELECT explicitly.

45

Cursors

TIP Always avoid declaration of cursors in the declaration
and specify them in the cursor FOR LOOP itself when deal-
ing with cursors to process all of the rows unconditionally.

Explicit Cursor Attributes

Every explicit cursor has four attributes associated with it that you can use to
determine whether a cursor is open or not, whether a fetch yielded a row or not,
and how many rows have been fetched so far. Table 2-1 lists these attributes.

Table 2-1. Explicit Cursor Attributes

ATTRIBUTE USE

%FOUND Indicates whether a FETCH yielded a row or not

%ISOPEN Indicates whether a cursor is OPEN or not

%NOTFOUND Indicates if a FETCH failed or if there are no more rows to fetch

%ROWCOUNT Indicates the number of rows fetched so far

To use these four cursor attributes, you prefix the cursor name with the cor-
responding attribute. For example, for the csr_org cursor defined earlier, these
four attributes can be referenced as csr_org%FOUND, csr_org%ISOPEN,
csr%NOTFOUND, and csr%ROWCOUNT. The %FOUND, %ISOPEN, and
%NOTFOUND attributes return a boolean TRUE or FALSE, and the %ROW-
COUNT attribute returns a numeric value. The following sections describe these
attributes in more detail.

049XCh02 10/17/02 12:58 PM Page 45

%FOUND

You use %FOUND to determine whether a FETCH returned a row or not. You
should use it after a cursor is opened, and it returns a value of TRUE if the imme-
diate FETCH yielded a row, and a value of FALSE if the immediate FETCH did not
fetch any row. Using %FOUND before opening a cursor or after closing a cursor
raises the error “ORA-01001: invalid cursor” or the predefined exception
INVALID_CURSOR.

I presented an example of using %FOUND during the discussion of using the
WHILE LOOP to fetch multiple rows. Here’s the same example repeated for illus-
tration:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

OPEN csr_org;

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FETCH csr_org INTO v_org_rec;

WHILE (csr_org%FOUND) LOOP

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_rec.org_short_name,30,’ ‘));

FETCH csr_org INTO v_org_rec;

END LOOP;

CLOSE csr_org;

END;

/

The following points are worth noting regarding the statement

WHILE (csr_org%FOUND) LOOP

46

Chapter 2

049XCh02 10/17/02 12:58 PM Page 46

• The statement appears after the first FETCH statement, and it should
always appear after a FETCH statement. If %NOTFOUND is referenced
before the first FETCH, it returns NULL.

• The condition csr_org%FOUND evaluates to TRUE if the first FETCH
returned a row; otherwise, it evaluates to FALSE and the WHILE LOOP is
never executed.

%ISOPEN

You use %ISOPEN to check if a cursor is already open or not. You use it to prevent
an already opened cursor from opening or an already closed cursor from closing.
It returns a value of TRUE if the referenced cursor is open; otherwise, it returns
FALSE. Here’s the previous example modified to use the %ISOPEN attribute:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

IF (NOT csr_org%ISOPEN) THEN

OPEN csr_org;

END IF;

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FETCH csr_org INTO v_org_rec;

WHILE (csr_org%FOUND) LOOP

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_rec.org_short_name,30,’ ‘));

FETCH csr_org INTO v_org_rec;

END LOOP;

IF (csr_org%ISOPEN) THEN

CLOSE csr_org;

END IF;

END;

/

47

Cursors

049XCh02 10/17/02 12:58 PM Page 47

Note the following points about %ISOPEN:

• csr_org%ISOPEN is negated in the beginning to check that the cursor isn’t
already open.

• At the end, the cursor csr_org is closed only if it’s open.

• %ISOPEN can be referenced after a cursor is closed, and it returns FALSE
in this case.

%NOTFOUND

You use %NOTFOUND to determine if a FETCH resulted in no rows (i.e., the
FETCH failed) or there are no more rows to FETCH. It returns a value of TRUE if
the immediate FETCH yielded no row and a value of FALSE if the immediate
FETCH resulted in one row. Using %NOTFOUND before opening a cursor or after
a cursor is closed raises the error “ORA-01001: invalid cursor” or the predefined
exception INVALID_CURSOR. I presented an example of using %NOTFOUND
during the discussion of using the simple LOOP to fetch multiple rows. Here’s the
same example repeated for illustration:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

OPEN csr_org;

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

LOOP

FETCH csr_org INTO v_org_rec;

EXIT WHEN csr_org%NOTFOUND;

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

48

Chapter 2

049XCh02 10/17/02 12:58 PM Page 48

rpad(v_org_rec.org_short_name,30,’ ‘));

END LOOP;

CLOSE csr_org;

END;

/

The following points are worth noting:

• Note the statement

EXIT WHEN csr_org%NOTFOUND;.

It appears after the first FETCH statement, and it should always appear
after a FETCH statement. If %NOTFOUND is referenced before the first
FETCH or after a cursor is opened, it returns NULL.

• The condition csr_org%NOTFOUND is used as the EXIT condition for
the loop. It evaluates to TRUE if the first FETCH didn’t return a row and the
loop is exited. If the first FETCH resulted in at least one row, it evaluates to
FALSE and the loop is executed until the last row is fetched. After the last
row is fetched, %NOTFOUND evaluates to TRUE and the loop is exited.

%ROWCOUNT

You use %ROWCOUNT to determine the number of rows fetched from a cursor. It
returns 1 after the first fetch and is incremented by 1 after every successful fetch.
It can be referenced after a cursor is opened or before the first fetch and returns
zero in both cases. Using %ROWCOUNT before opening a cursor or after closing
a cursor raises the error “ORA-01001: invalid cursor” or the predefined exception
INVALID_CURSOR. The best use of this attribute is in a cursor FOR LOOP to
determine the number of rows returned by the cursor. Since a cursor FOR LOOP
is used to process all the rows of the cursor unconditionally, the value of this
attribute after the cursor FOR LOOP is executed gives the total number of rows
returned by the cursor.

In the following example, I’ve modified the cursor FOR LOOP presented ear-
lier to include %ROWCOUNT:

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

49

Cursors

049XCh02 10/17/02 12:58 PM Page 49

num_total_rows NUMBER;

BEGIN

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FOR idx IN csr_org LOOP

dbms_output.put_line(rpad(idx.hrc_descr,20,’ ‘)||’ ‘||

rpad(idx.org_short_name,30,’ ‘));

num_total_rows := csr_org%ROWCOUNT;

END LOOP;

IF num_total_rows > 0 THEN

dbms_output.new_line;

dbms_output.put_line(‘Total Organizations = ‘||to_char(num_total_rows));

END IF;

END;

/

Here’s the output of this program:

Organization Details with Hierarchy

Hierarchy Organization
------------------- -------------------------
CEO/COO Office of CEO ABC Inc.
CEO/COO Office of CEO DataPro Inc.
CEO/COO Office of CEO XYZ Inc.
VP Office of VP Mktg ABC Inc.
VP Office of VP Sales ABC Inc.
VP Office of VP Tech ABC Inc.
Total Organizations = 6

PL/SQL procedure successfully completed.

%ROWCOUNT is an incremental count of the number of rows, and hence
you can use it to check for a particular value. In this example, the first three lines
after the BEGIN and before the cursor loop are displayed, irrespective of the
number of rows returned by the cursor. This is true even if the cursor returned no
rows. To prevent this, you can use the value of %ROWCOUNT to display them
only if the cursor returns at least one row. Here’s the code to do so:

50

Chapter 2

049XCh02 10/17/02 12:58 PM Page 50

DECLARE

CURSOR csr_org IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

ORDER by 2;

num_total_rows NUMBER;

BEGIN

FOR idx IN csr_org LOOP

IF csr_org%ROWCOUNT = 1 THEN

dbms_output.put_line(‘Organization Details with Hierarchy’);

dbms_output.put_line

(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

END IF;

dbms_output.put_line(rpad(idx.hrc_descr,20,’ ‘)||’ ‘||

rpad(idx.org_short_name,30,’ ‘));

num_total_rows := csr_org%ROWCOUNT;

END LOOP;

IF num_total_rows > 0 THEN

dbms_output.new_line;

dbms_output.put_line(‘Total Organizations = ‘||to_char(num_total_rows));

END IF;

END;

/

The following points are worth noting:

• The %ROWCOUNT is checked inside the cursor FOR LOOP.

• After the first row is fetched, the value of %ROWCOUNT is 1 and the head-
ings are displayed. Successive fetches increment the value of
%ROWCOUNT by 1 so that %ROWCOUNT is greater than 1 after the first
fetch.

• After the last fetch, the cursor FOR LOOP is exited and the value of
%ROWCOUNT is the total number of rows processed.

51

Cursors

049XCh02 10/17/02 12:58 PM Page 51

Parameterized Cursors

An explicit cursor can take parameters and return a data set for a specific param-
eter value. This eliminates the need to define multiple cursors and hard-code
a value in each cursor. It also eliminates the need to use PL/SQL bind variables.

In the following code, I use the cursor example presented earlier in the
section to illustrate parameterized cursors:

DECLARE

CURSOR csr_org(p_hrc_code NUMBER) IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = p_hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

OPEN csr_org(1);

dbms_output.put_line(‘Organization Details with Hierarchy 1’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

LOOP

FETCH csr_org INTO v_org_rec;

EXIT WHEN csr_org%NOTFOUND;

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_rec.org_short_name,30,’ ‘));

END LOOP;

CLOSE csr_org;

OPEN csr_org(2);

dbms_output.put_line(‘Organization Details with Hierarchy 2’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

LOOP

FETCH csr_org INTO v_org_rec;

EXIT WHEN csr_org%NOTFOUND;

dbms_output.put_line(rpad(v_org_rec.hrc_descr,20,’ ‘)||’ ‘||

52

Chapter 2

049XCh02 10/17/02 12:58 PM Page 52

rpad(v_org_rec.org_short_name,30,’ ‘));

END LOOP;

CLOSE csr_org;

END;

/

Here’s the output of this program:

Organization Details with Hierarchy 1

Hierarchy Organization
------------------ --------------------------
CEO/COO Office of CEO ABC Inc.
CEO/COO Office of CEO DataPro Inc.
CEO/COO Office of CEO XYZ Inc.
Organization Details with Hierarchy 2

Hierarchy Organization
------------------ --------------------------
VP Office of VP Mktg ABC Inc.
VP Office of VP Sales ABC Inc.
VP Office of VP Tech ABC Inc.

PL/SQL procedure successfully completed.

You define the cursor parameters immediately after the cursor name by
including the name of the parameter and its data type within parentheses. These
are referred to as the formal parameters. The actual parameters (i.e., the actual
data values for the formal parameters) are passed via the OPEN statement as
shown in the previous example. Notice how the same cursor is used twice with
different values of the parameters in each case.

You can rewrite the same example using a cursor FOR LOOP. In this case, the
actual parameters are passed via the cursor name referenced in the cursor FOR
LOOP. Here’s the code:

DECLARE

CURSOR csr_org(p_hrc_code NUMBER) IS

SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = p_hrc_code

ORDER by 2;

v_org_rec csr_org%ROWTYPE;

BEGIN

53

Cursors

049XCh02 10/17/02 12:58 PM Page 53

dbms_output.put_line(‘Organization Details with Hierarchy 1’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||

‘ ‘||rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FOR idx in csr_org(1) LOOP

dbms_output.put_line(rpad(idx.hrc_descr,20,’ ‘)||’ ‘||

rpad(idx.org_short_name,30,’ ‘));

END LOOP;

dbms_output.put_line(‘Organization Details with Hierarchy 2’);

dbms_output.put_line(‘------------------------’);;

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

FOR idx in csr_org(2) LOOP

dbms_output.put_line(rpad(idx.hrc_descr,20,’ ‘)||’ ‘||

rpad(idx.org_short_name,30,’ ‘));

END LOOP;

END;

/

The output of this program is the same as the output of the earlier one.
Parameterized cursors are very useful in processing nested cursor loops in

which an inner cursor is opened with data values passed to it from an outer
opened cursor.

SELECT FOR UPDATE Cursors

You use SELECT FOR UPDATE cursors for updating the rows retrieved by a cur-
sor. This is often required when there’s a need to modify each row retrieved by
a cursor without having to refetch that row. More often, SELECT FOR UPDATE
cursors are required to update a column of the table defined in the cursor
SELECT using a complex formula.

Defining a SELECT FOR UPDATE Cursor

A SELECT FOR UPDATE cursor is defined using the FOR UPDATE OF clause in
the cursor SELECT statement, as follows:

54

Chapter 2

049XCh02 10/17/02 12:58 PM Page 54

DECLARE

CURSOR csr_1 IS

SELECT * FROM sec_hrc_tab FOR UPDATE OF hrc_descr;

BEGIN

/* . . . Open the cursor and process the resultset . . . */

null;

END;

/

55

Cursors

NOTE Notice how the column name to be updated is speci-
fied in the FOR UPDATE OF clause. If no column name is
specified in the FOR UPDATE OF clause, any column of the
underlying cursor table can be modified.

Using a SELECT FOR UPDATE Cursor

Once you’ve defined a SELECT FOR UPDATE cursor, you use the WHERE CUR-
RENT OF clause to process the rows returned by it. You can use this clause in an
UPDATE or DELETE statement. It has the following syntax:

WHERE CURRENT of cursor_name;

where cursor_name is the name of the cursor defined with a FOR UPDATE
clause.

The following is a complete example of using SELECT FOR UPDATE cursors.
I use the sec_hrc_tab table to demonstrate this. First, this table is populated using
an INSERT statement as follows:

BEGIN

INSERT INTO sec_hrc_tab

SELECT * FROM hrc_tab;

COMMIT;

END;

/

The output can be verified as follows:

SQL> select * from sec_hrc_tab;

HRC_CODE HRC_DESCR

049XCh02 10/17/02 12:58 PM Page 55

----- -------------

1 CEO/COO

2 VP

3 Director

4 Manager

5 Analyst

Then I define a SELECT FOR UPDATE cursor and use the WHERE CURRENT
OF clause to update the rows retrieved by this cursor in a particular fashion.
Here’s the program for this:

DECLARE

CURSOR csr_1 IS

SELECT * FROM sec_hrc_tab FOR UPDATE OF hrc_descr;

v_hrc_descr VARCHAR2(20);

BEGIN

FOR idx IN csr_1 LOOP

v_hrc_descr := UPPER(idx.hrc_descr);

UPDATE sec_hrc_tab

SET hrc_descr = v_hrc_descr

WHERE CURRENT OF csr_1;

END LOOP;

COMMIT;

END;

/

This program updates the hrc_descr column of each row retrieved by csr_1
with its value converted to uppercase. The output can be verified as follows:

SQL> select * from sec_hrc_tab;

HRC_CODE HRC_DESCR
-------- ----------

1 CEO/COO
2 VP
3 DIRECTOR
4 MANAGER
5 ANALYST

56

Chapter 2

049XCh02 10/17/02 12:58 PM Page 56

The mechanism of SELECT FOR UPDATE cursors works as follows:

1. The SELECT FOR UPDATE cursor puts a lock on the rows retrieved by
the cursor. If it’s unable to obtain a lock because some other session has
placed a lock on the specific rows, it waits until it can get a lock. A
COMMIT or ROLLBACK in the corresponding session frees the locks
held by other sessions.

2. For each row identified by the cursor, the cursor updates the specified
column of that row. That is, it keeps track of the current row and updates
it, and then fetches the subsequent row and updates it. It does this with-
out scanning the same table again. This is unlike an ordinary UPDATE or
DELETE statement inside the loop, where the cursor scans the updated
table again to determine the current row to be modified.

Although you could achieve the same function by using a simple UPDATE
statement, this example is meant to illustrate the use of SELECT FOR UPDATE
cursors.

To use WHERE CURRENT OF, you have to declare the cursor using FOR
UPDATE. The reverse is not true. That is, you can use a SELECT FOR UPDATE
cursor to modify the rows without using the WHERE CURRENT OF clause. Then,
you have to update or delete the cursor rows using the primary key.

A SELECT FOR UPDATE cursor offers two important advantages: Namely, it
locks the rows after opening the cursor and the resultset rows are identified for
update, and it eliminates a second fetch of the rows for doing the update and pre-
serves the current row by the WHERE CURRENT OF clause.

You have to do a COMMIT outside of the cursor loop when you use WHERE
CURRENT OF in processing the rows of a SELECT FOR UPDATE cursor. This is
because a COMMIT releases the lock on the rows that the SELECT FOR UPDATE
has put a lock on, and this causes a subsequent fetch to fail.

Implicit Cursors

Of all the types of DML statements, the explicit cursors discussed previously are
used for processing multirow SELECT statements. To keep track of other types of
DML statements, such as INSERT, UPDATE, DELETE, and single-row SELECT . . .
INTO statements, Oracle PL/SQL provides the implicit cursor, also known as the
SQL cursor. Just as a SELECT statement points to a work area whether it returns
a single row or multiple rows, even INSERT, UPDATE, and DELETE statements
are executed within the context of a work area, and the Oracle PL/SQL engine
automatically opens the implicit or SQL cursor that points to this work area. Also,
after the execution of the DML statements, the implicit cursor is automatically

57

Cursors

049XCh02 10/17/02 12:58 PM Page 57

closed. Hence, there’s no such thing as OPEN, FETCH, and CLOSE. These
operations are only valid for an explicit cursor. Here’s an example of an
implicit cursor:

BEGIN

DELETE sec_hrc_org_tab WHERE hrc_code = 1;

INSERT INTO sec_hrc_org_tab

SELECT h.hrc_code, h.hrc_descr,

o.org_id, o.org_short_name, o.org_long_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = 1;

IF (SQL%FOUND) THEN

dbms_output.put_line(TO_CHAR(SQL%ROWCOUNT)||

‘ rows inserted into secondary table for hierarchy 1’);

END IF;

COMMIT;

END;

/

The output of this code can be verified as follows:

3 rows inserted into secondary table for hierarchy 1

PL/SQL procedure successfully completed.

SQL> select * from sec_hrc_org_tab;

HRC_CODE HRC_DESCR ORG_ID ORG_SHORT_NAME
----- ---------- ----- -------------
ORG_LONG_NAME

1 CEO/COO 1001 Office of CEO ABC Inc.
Office of CEO ABC Inc.

1 CEO/COO 1002 Office of CEO XYZ Inc.
Office of CEO XYZ Inc.

1 CEO/COO 1003 Office of CEO DataPro Inc.
Office of CEO DataPro Inc.

This code refreshes a secondary table named sec_hrc_org_tab with new
rows. It first deletes all rows from the sec_hrc_org_tab table where the hrc_code
matches 1. It then inserts new rows into the same table. Now the question is, did

58

Chapter 2

049XCh02 10/17/02 12:58 PM Page 58

the INSERT succeed? That is, did it insert zero or more rows? This is determined
by an implicit cursor attribute, SQL%FOUND, which is defined in the statement

IF (SQL%FOUND) THEN

SQL%FOUND returns a boolean true when at least one row has been
inserted into the temp_hrc_org_tab. When this happens, the code inside the IF
condition is executed and the given output appears. Also note the use of the
SQL%ROWCOUNT attribute. This gives the numbers of rows inserted into
the sec_hrc_org_tab table. Note that the SQL%ROWCOUNT gives the number of
rows affected by the immediately preceding DML statement.

Implicit Cursor Attributes

Although an implicit cursor is opened and closed automatically by the PL/SQL
engine, the four attributes associated with an explicit cursor are also available for
an implicit cursor. You can reference these attributes by prefixing the keyword
SQL with the particular attribute. Table 2-2 lists the four attributes of the implicit
cursor.

Table 2-2. Implicit Cursor Attributes

ATTRIBUTE USE

SQL%FOUND Indicates whether an INSERT, UPDATE, or DELETE

affected any row(s) or not.

SQL%ISOPEN Indicates whether the cursor is OPEN or not. This is

FALSE always, as the implicit cursor is closed after the

DML statement is executed.

SQL%NOTFOUND Indicates if a DML statement failed to modify any rows.

SQL%ROWCOUNT Indicates the number of rows affected by the DML

statement.

Note that the name of the cursor in this case is “SQL” instead of a
programmer-defined cursor name.

The SQL%FOUND, SQL%ISOPEN, and SQL%NOTFOUND attributes
return a boolean TRUE or FALSE, and the SQL%ROWCOUNT attribute returns
a numeric value. The following sections describe these attributes in detail.

59

Cursors

049XCh02 10/17/02 12:58 PM Page 59

SQL%FOUND

You use SQL%FOUND to determine whether an INSERT, UPDATE, or DELETE
affected any row(s) or not, or a SELECT . . . INTO returned a row or not. You
should use it immediately after the DML statement, and it returns a value of
TRUE if the INSERT, UPDATE, or DELETE affected one or more rows, or the
SELECT . . . INTO fetched a row. Otherwise, it returns a value of FALSE. Using
SQL%FOUND before defining any DML statement yields NULL.

I provided an example of using SQL%FOUND during the discussion of
implicit cursors. I repeat it here for illustration:

BEGIN

DELETE sec_hrc_org_tab WHERE hrc_code = 1;

INSERT INTO sec_hrc_org_tab

SELECT h.hrc_code, h.hrc_descr,

o.org_id, o.org_short_name, o.org_long_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = 1;

IF (SQL%FOUND) THEN

dbms_output.put_line(TO_CHAR(SQL%ROWCOUNT)||

‘ rows inserted into secondary table for hierarchy 1’);

END IF;

COMMIT;

END;

/

The following points are worth noting:

• The statement IF (SQL%FOUND) THEN appears immediately after the
INSERT statement and it always should. If SQL%FOUND is referenced
before the INSERT statement, it returns NULL.

• The condition SQL%FOUND evaluates to TRUE if the INSERT succeeded
in creating one or more rows; otherwise, it evaluates to FALSE and the code
inside the IF is never executed.

SQL%ISOPEN

SQL%ISOPEN is always FALSE because the implicit cursor is closed after the
DML statement is executed. Hence, it’s not useful to check this attribute for
the same.

60

Chapter 2

049XCh02 10/17/02 12:58 PM Page 60

SQL%NOTFOUND

You use SQL%NOTFOUND to determine if an INSERT, UPDATE, or DELETE
failed to modify any rows. It returns a value of TRUE if no rows were modified by
the INSERT, UPDATE, or DELETE, and a value of FALSE if at least one row was
modified. Using SQL%NOTFOUND before executing any DML statement yields
a NULL value. Here’s an example of using SQL%NOTFOUND:

DECLARE

v_num_rows NUMBER;

BEGIN

DELETE sec_hrc_org_tab WHERE hrc_code = 1;

INSERT INTO sec_hrc_org_tab

SELECT h.hrc_code, h.hrc_descr,

o.org_id, o.org_short_name, o.org_long_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = 1;

v_num_rows := SQL%ROWCOUNT;

IF (SQL%FOUND) THEN

UPDATE sec_hrc_audit

SET num_rows = v_num_rows

WHERE hrc_code = 1;

IF (SQL%NOTFOUND) THEN

INSERT INTO sec_hrc_audit(hrc_code, num_rows) VALUES (1, v_num_rows);

END IF;

END IF;

COMMIT;

END;

/

The output of this program can be verified as follows:

PL/SQL procedure successfully completed.

SQL> select * from sec_hrc_org_tab;

HRC_CODE HRC_DESCR ORG_ID ORG_SHORT_NAME
------ ---------- ------ ---------------
ORG_LONG_NAME

1 CEO/COO 1001 Office of CEO ABC Inc.
Office of CEO ABC Inc.

61

Cursors

049XCh02 10/17/02 12:58 PM Page 61

1 CEO/COO 1002 Office of CEO XYZ Inc.
Office of CEO XYZ Inc.

1 CEO/COO 1003 Office of CEO DataPro Inc.
Office of CEO DataPro Inc.

SQL> select * from sec_hrc_audit;

HRC_CODE NUM_ROWS
----- -----
1 3

This code first deletes all rows from the sec_hrc_org_tab table where the
hrc_code matches 1. It then inserts new rows into the same table. Now the
question is, did the INSERT succeed? That is, did it insert zero or more rows? This
is determined by the implicit cursor attribute SQL%FOUND, which is defined in
the statement

IF (SQL%FOUND) THEN

SQL%FOUND returns a boolean true when at least one row has been
inserted into the sec_hrc_org_tab. When this happens, the code inside the IF
condition is executed and the UPDATE statement against the sec_hrc_audit table
is executed.

Now the second question is, did this update succeed or fail? This is deter-
mined by the implicit cursor attribute SQL%NOTFOUND. If the update failed,
SQL%NOTFOUND returns TRUE and a record is inserted into the sec_hrc_audit
table. Notice the use of SQL% attributes immediately after each DML statement.
The use of SQL%FOUND refers to its immediately preceding DML statement—
that is, the first INSERT statement. The use of the SQL%NOTFOUND attribute
refers to its immediately preceding DML statement—that is, the UPDATE state-
ment. Also note the use of the SQL%ROWCOUNT attribute. This attribute gives
the numbers of rows inserted into the sec_hrc_org_tab table, as it’s used immedi-
ately after the INSERT statement.

SQL%ROWCOUNT

You use %ROWCOUNT to determine the number of rows affected by a DML
statement. It returns a value greater than zero if the DML statement succeeded;
otherwise, it returns zero. It’s a good alternative to SQL%NOTFOUND. Since
%NOTFOUND returns TRUE if the DML statement failed, it’s equivalent to use

IF (SQL%ROWCOUNT = 0) THEN . . .

62

Chapter 2

049XCh02 10/17/02 12:58 PM Page 62

instead of

IF (SQL%NOTFOUND) THEN . . .

Here’s the previous example modified to use %ROWCOUNT:

DECLARE

v_num_rows NUMBER;

BEGIN

DELETE sec_hrc_org_tab WHERE hrc_code = 1;

INSERT INTO sec_hrc_org_tab

SELECT h.hrc_code, h.hrc_descr,

o.org_id, o.org_short_name, o.org_long_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = 1;

v_num_rows := SQL%ROWCOUNT;

IF (SQL%FOUND) THEN

UPDATE sec_hrc_audit

SET num_rows = v_num_rows

WHERE hrc_code = 1;

IF (SQL%ROWCOUNT=0) THEN

INSERT INTO sec_hrc_audit(hrc_code, num_rows) VALUES (1, v_num_rows);

END IF;

END IF;

COMMIT;

END;

/

The output of this program is same as the output of the previous example.
The following points are worth noting:

• The first SQL%ROWCOUNT returns the number of rows affected by the
very first INSERT statement—that is, the number of rows inserted into the
sec_hrc_org_tab table.

• The second SQL%ROWCOUNT returns the number of rows affected by the
UPDATE statement against the table sec_hrc_audit.

63

Cursors

049XCh02 10/17/02 12:58 PM Page 63

How Using SQL%FOUND, SQL%NOTFOUND, or SQL%ROWCOUNT Replaces
a SELECT COUNT(*)

Using SQL%FOUND, SQL%NOTFOUND, or SQL%ROWCOUNT replaces
a SELECT COUNT(*), as you can see from the previous example. Notice the IF
statement after the first statement. If this weren’t there, the way to check whether
the insert succeeded or not is to do a SELECT COUNT(*) from the
sec_hrc_org_table into a variable and explicitly check for its value to be greater
than zero. The same is true for the sec_hrc_audit table. Hence, the program will
be as shown here:

DECLARE

v_num_rows NUMBER;

v_cnt NUMBER;

BEGIN

DELETE sec_hrc_org_tab WHERE hrc_code = 1;

INSERT INTO sec_hrc_org_tab

SELECT h.hrc_code, h.hrc_descr,

o.org_id, o.org_short_name, o.org_long_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND h.hrc_code = 1;

SELECT COUNT(*)

INTO v_num_rows

FROM sec_hrc_org_tab

WHERE hrc_code = 1;

IF (v_num_rows >0) THEN

SELECT COUNT(*)

INTO v_cnt

FROM sec_hrc_audit

WHERE hrc_code = 1;

IF (v_cnt > 0) THEN

UPDATE sec_hrc_audit

SET num_rows = v_num_rows

WHERE hrc_code = 1;

64

Chapter 2

TIP Always check for the attributes SQL%FOUND,
SQL%NOTFOUND, and SQL%ROWCOUNT immediately
after the DML statement.

049XCh02 10/17/02 12:58 PM Page 64

ELSIF (v_cnt=0) THEN

INSERT INTO sec_hrc_audit(hrc_code, num_rows) VALUES (1, v_num_rows);

END IF;

END IF;

COMMIT;

END;

/

The output of this program is same as the output of the previous example.
Even if you don’t use a SELECT COUNT(*), at least use a SELECT . . . INTO

instead. Using implicit cursor attributes saves this overhead.

Cursor Variables

As mentioned in the earlier section, “Introducing Cursors,” an explicit cursor
once declared was associated with a specific query—only the one specific query
that was known at compile time. In this way, the cursor declared was static and
couldn’t be changed at runtime. It always pointed to the same work area until the
execution of the program completed. However, you may sometimes want to have
a variable that can point to different work areas depending on runtime con-
ditions. PL/SQL 2.2 onward offers this facility by means of cursor variables.

A cursor variable is a single PL/SQL variable that you can associate with dif-
ferent queries at runtime. The same variable can point to different work areas. In
this way, cursor variables and cursors are analogous to PL/SQL variables and
constants, but from a cursor perspective. A cursor variable acts like a pointer that
holds the address of a specific work area defined by the query it’s pointing to.

Before PL/SQL 2.3, cursor variables were available for use in host environ-
ments such as Pro*C. As of PL/SQL 2.3 onward, cursor variables are available for
use in both server- and client-side PL/SQL as well as in host environments.

Why Use Cursor Variables?

The primary advantage of using cursor variables is their capability to pass result-
sets between stored subprograms. Before cursor variables, this wasn’t possible.
Now, with cursor variables, the work area that a cursor variable points to remains
accessible as long as the variable points to it. Hence, you can point a cursor vari-
able to a work area by opening a cursor for it, and then any application such as
Pro*C, an Oracle client, or another server application can fetch from the corre-
sponding resultset.

65

Cursors

049XCh02 10/17/02 12:58 PM Page 65

Another advantage of cursor variables is their introduction of a sort of dyna-
mism, in that a single cursor variable can be associated with multiple queries at
runtime.

Defining a Cursor Variable

Defining a cursor variable consists of defining a pointer of type REF CURSOR and
defining a variable of this type. These steps are outlined in the following sections.

Defining a Pointer of Type CURSOR

In PL/SQL, a pointer is declared using the syntax

REF type

The keyword REF implies that the new type so defined is a pointer to the
defined type.

PL/SQL offers two types of REF types: CURSOR and an object type. So, the
definition of a cursor variable involves the definition of a REF CURSOR first, as
shown here:

TYPE rc IS REF CURSOR;

Defining a Variable of Type REF CURSOR

Once you’ve defined a REF CURSOR type, the next step is to declare a variable of
this type. Here’s the code for this:

v_rc rc;

So the complete declaration of a cursor variable is as follows:

TYPE rc IS REF CURSOR;

v_rc rc;

This code suggests that rc is a pointer of type CURSOR and v_rc (in fact, any vari-
able) defined of type rc points to a SQL cursor.

66

Chapter 2

049XCh02 10/17/02 12:58 PM Page 66

Strong and Weak REF CURSOR Types

The REF CURSOR type defined earlier is called a weak REF CURSOR type. This is
because it doesn’t dictate the return type of the cursor. Hence, it can point to any
SELECT query with any number of columns. Weak cursor types are available in
PL/SQL 2.3 and higher versions.

PL/SQL lets you define a strong REF CURSOR having a return type using the
following syntax:

TYPE ref_type_name IS REF CURSOR RETURN return_type;

Here, ref_type_name is the name of the new pointer name and return_type is
a record type of either %ROWTYPE or a user-defined record type. For example,
you can declare strong REF CURSORS as follows:

TYPE rc is REF CURSOR RETURN hrc_tab%ROWTYPE;

v_rc rc;

or

TYPE hrc_rec is RECORD (hrc_code NUMBER, hrc_name VARCHAR2(20));

TYPE rc IS REF CURSOR RETURN hrc_rec;

In the case of a strong REF CURSOR, the query that’s associated with it
should be type-compatible one to one with the return type of the corresponding
REF CURSOR.

Using a Cursor Variable

Once you’ve defined a cursor variable, you can use it to associate it with a query.
Here are the steps:

1. Allocate memory.

2. Open the cursor variable for a query.

3. Fetch the results into a PL/SQL record or individual PL/SQL variables.

4. Close the cursor variable.

The following sections provide more detail about each step in the process.

67

Cursors

049XCh02 10/17/02 12:58 PM Page 67

Allocate Memory

Once you declare a cursor variable in PL/SQL, the PL/SQL engine in PL/SQL 2.3
and higher versions automatically allocates memory for storage of rows. Prior to
PL/SQL 2.3, a host environment was needed to explicitly allocate memory to
a cursor variable.

Opening the Cursor Variable

Once you’ve defined a cursor variable, you have to open it for a multirow query,
either with an arbitrary number of columns in the case of a weak REF CURSOR or
with a type-compatible query in the case of a strong REF CURSOR. Opening the
cursor variable identifies the associated query, executes it, and also identifies
the resultset.

You open a cursor variable using the OPEN-FOR statement. Here’s the syntax:

OPEN {cursor_variable_name | :host_cursor_variable_name} FOR

{ select_query

| dynamic_string [USING bind_variable[, bind_variable] . . .] };

where cursor_variable_name is the name of the declared cursor variable and
select_query is the SELECT query associated with the cursor variable. Also,
host_cursor_variable_name is the name of the cursor variable declared in
a PL/SQL host environment (such as Pro*C), and bind_variable represents the
name of a PL/SQL bind variable. dynamic_string represents a dynamic SQL
string instead of a hard-coded SELECT statement. You open cursor variables for
dynamic strings using native dynamic SQL.

68

Chapter 2

CROSS-REFERENCE Chapter 7 covers opening cursor vari-
ables for dynamic strings using native dynamic SQL.

Here’s an example that illustrates opening the cursor variable for the previ-
ously declared weak cursor variable v_rc:

DECLARE

TYPE rc is REF CURSOR;

v_rc rc;

BEGIN

049XCh02 10/17/02 12:58 PM Page 68

OPEN v_rc FOR SELECT * from hrc_tab;

/* . . . FETCH the results and process the resultset */

null;

END;

/

69

Cursors

TIP You can’t define any parameters while opening a cur-
sor variable for a query. However, the associated query can
reference PL/SQL variables, parameters, host variables, and
functions.

Fetching the Results into a PL/SQL Record or Individual
PL/SQL Variables

The next step is to fetch the cursor variable into a PL/SQL record or individual
variables. This retrieves individual rows of data into the PL/SQL variables for pro-
cessing. You fetch a cursor variable using the FETCH statement, which has three
forms. Here’s the syntax:

FETCH cursor_variable_name INTO var1, var2, . . . , varN;

or

FETCH cursor_variable_name INTO table_name%ROWTYPE;

or

FETCH cursor__variable_name INTO record_name;

Here, var1, var2, and varN represent PL/SQL variables having data types identical
to the cursor variable query. table_name%ROWTYPE represents a PL/SQL record
type with attributes implicitly defined as the column names of the table identi-
fied by table_name, which are identical to the cursor variable SELECT. In this
case, you need to explicitly define the record type. Lastly, record_name is a vari-
able of a PL/SQL record type that’s explicitly defined. In this case also, the
number and data types of the individual attributes of the record should exactly
match the columns in the cursor variable SELECT.

Here’s an example that extends the previous example of v_rc to fetching rows:

DECLARE

TYPE rc is REF CURSOR;

v_rc rc;

049XCh02 10/17/02 12:58 PM Page 69

hrc_rec hrc_tab%ROWTYPE;

BEGIN

OPEN v_rc FOR SELECT * from hrc_tab;

LOOP

FETCH v_rc INTO hrc_rec;

EXIT WHEN v_rc%NOTFOUND;

/* . . . Process the individual records */

null;

END LOOP;

END;

/

The number and data types of the individual variables should exactly match
the columns list in the cursor variable’s associated SELECT statement. If the
cursor is fetched into a record type (either table_name%ROWTYPE or
record_name), the number and data type of each attribute in the record should
exactly match the columns list of the cursor variable associated SELECT state-
ment. If this isn’t the case, then PL/SQL raises an error at compile time if the
cursor variable is strongly typed, and a predefined exception called
ROWTYPE_MISMATCH at runtime if the cursor variable is weakly typed.

70

Chapter 2

CAUTION Never fetch from a cursor variable before
opening it.

TIP Always fetch into a record type of
table_name%ROWTYPE, or at least fetch into a record type
compatible with the cursor SELECT rather than into indi-
vidual variables. This is less error-prone and also improves
program readability.

Similar to static cursors, a single FETCH always fetches only one row (the
current row) from the active set. To fetch multiple rows, use the FETCH statement
in a LOOP.

049XCh02 10/17/02 12:58 PM Page 70

Closing the Cursor Variable

Once the processing of the rows is completed, you can close the cursor variable.
Closing the cursor variable frees the resources allocated to the query but doesn’t
necessarily free the storage of the cursor variable itself. The cursor variable is
freed when the variable is out of scope. You close a cursor using the CLOSE state-
ment. Here’s the syntax:

CLOSE cursor_variable_name;

71

Cursors

TIP The CLOSE statement should always appear after the
FETCH statement. When you use a loop to fetch the rows
from a cursor variable, you should insert the CLOSE state-
ment after you close the loop. Otherwise, it results in an
illegal fetch. Don’t fetch from an already closed cursor vari-
able, and don’t close an already closed cursor variable.

Here’s a complete example of using the v_rc cursor, involving all the steps
previously covered:

DECLARE

TYPE rc is REF CURSOR;

v_rc rc;

hrc_rec hrc_tab%ROWTYPE;

BEGIN

OPEN v_rc FOR SELECT * from hrc_tab;

dbms_output.put_line(‘Hierarchy Details’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(‘Code’||’ ‘||rpad(‘Description’,20,’ ‘));

dbms_output.put_line(rpad(‘-’,4,’-’)||’ ‘||rpad(‘-’,20,’-’));

LOOP

FETCH v_rc INTO hrc_rec;

EXIT WHEN v_rc%NOTFOUND;

dbms_output.put_line(to_char(hrc_rec.hrc_code)||’ ‘||

rpad(hrc_rec.hrc_descr,20,’ ‘));

END LOOP;

CLOSE v_rc;

END;

/

049XCh02 10/17/02 12:58 PM Page 71

Here’s the output of this program:

Hierarchy Details

Code Description
-- ------------
1 CEO/COO
2 VP
3 Director
4 Manager
5 Analyst

PL/SQL procedure successfully completed.

This code is similar to the code used for static cursors, except that it uses cursor
variables instead of cursors.

72

Chapter 2

TIP The scope of a cursor variable is the scope of the
PL/SQL block in which it is defined.

Cursor Variables Assignment

One way to make a cursor variable point to a query work area is to open a query
for the cursor variable. You saw this earlier. Here, I describe a second way to make
a cursor variable point to a query work area. Simply assign the cursor variable
to an already OPENed cursor variable. Here’s an example of cursor variable
assignment:

DECLARE

TYPE rc is REF CURSOR;

v_rc1 rc;

v_rc2 rc;

hrc_rec hrc_tab%ROWTYPE;

BEGIN

OPEN v_rc1 FOR SELECT * from hrc_tab;

dbms_output.put_line(‘Hierarchy Details’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(‘Code’||’ ‘||rpad(‘Description’,20,’ ‘));

dbms_output.put_line(rpad(‘-’,4,’-’)||’ ‘||rpad(‘-’,20,’-’));

/* Assign v_rc1 to v_rc2 */

v_rc2 := v_rc1;

049XCh02 10/17/02 12:58 PM Page 72

LOOP

/* Fetch from the second cursor variable, i.e., v_rc2 */

FETCH v_rc2 INTO hrc_rec;

EXIT WHEN v_rc2%NOTFOUND;

dbms_output.put_line(to_char(hrc_rec.hrc_code)||’ ‘||

rpad(hrc_rec.hrc_descr,20,’ ‘));

END LOOP;

CLOSE v_rc2;

END;

/

The output of this program is the same as the output of the earlier example with-
out the assignment. Note that closing v_rc2 also closes v_rc1 and vice versa.

However, if the source cursor variable is strongly typed, the target cursor
variable must be of the same type as the source cursor variable. This restriction
doesn’t apply if the source cursor variable is weakly typed. Here’s an example that
illustrates this concept:

DECLARE

TYPE rc1 is REF CURSOR RETURN hrc_tab%ROWTYPE;

TYPE rc2 is REF CURSOR RETURN hrc_tab%ROWTYPE;

TYPE rc is REF CURSOR;

v_rc1 rc1;

v_rc2 rc2;

v_rc3 rc;

v_rc4 rc;

hrc_rec hrc_tab%ROWTYPE;

BEGIN

OPEN v_rc1 FOR SELECT * from hrc_tab;

/* Assign v_rc1 to v_rc2 */

v_rc2 := v_rc1; — This causes type error.

v_rc3 := v_rc1; — This succeeds.

v_rc4 := v_rc3; — This succeeds.

/* . . . FETCH and process . . . */

null;

END;

/

73

Cursors

CAUTION Don’t assign an unopened cursor variable to
another cursor variable. Doing so causes the error
INVALID_CURSOR.

049XCh02 10/17/02 12:58 PM Page 73

Cursor Variable Attributes

All the attributes associated with explicit cursors are available with cursor vari-
ables. You can use the four explicit cursor attributes with cursor variables by
referencing them as cursor_variable_name%ISOPEN,
cursor_variable_name%FOUND, cursor_variable_name%NOTFOUND,
and cursor_variable_name%ROWCOUNT.

SYS_REFCURSOR Type in PL/SQL 9i

PL/SQL 9i makes available a type called SYS_REFCURSOR that defines a generic
weak cursor. You can use it as follows:

DECLARE

v_rc SYS_REFCURSOR;

BEGIN

OPEN v_rc FOR SELECT * from hrc_tab;

/* . . . FETCH and process the resultset . . . */

null;

END;

/

Before Oracle9i you needed to perform two steps:

1. Define a type of REF CURSOR.

2. Define the cursor variable of this type.

SYS_REFCURSOR makes it convenient to define a cursor variable in a single
step. However, you can use it to define only weak cursor variables. Here’s an
example of using SYS_REFCURSOR for cursor variable processing:

DECLARE

v_rc SYS_REFCURSOR;

hrc_rec hrc_tab%ROWTYPE;

74

Chapter 2

TIP You can’t assign a null value to a cursor variable. Also,
you can’t test cursor variables for equality, inequality, or
nullity.

049XCh02 10/17/02 12:58 PM Page 74

BEGIN

OPEN v_rc FOR SELECT * from hrc_tab;

dbms_output.put_line(‘Hierarchy Details’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(‘Code’||’ ‘||rpad(‘Description’,20,’ ‘));

dbms_output.put_line(rpad(‘-’,4,’-’)||’ ‘||rpad(‘-’,20,’-’));

LOOP

FETCH v_rc INTO hrc_rec;

EXIT WHEN v_rc%NOTFOUND;

dbms_output.put_line(to_char(hrc_rec.hrc_code)||’ ‘||

rpad(hrc_rec.hrc_descr,20,’ ‘));

END LOOP;

CLOSE v_rc;

END;

/

Dynamism in Using Cursor Variables

The real use of cursor variables is when you have a need to open multiple queries
using the same cursor variable or to dynamically assign different queries to the
same cursor variable depending on runtime conditions. I discuss two examples
in the following sections that illustrate the dynamism involved in using cursor
variables.

Example 1: Opening Multiple Queries Using the Same Cursor Variable

To open multiple queries using the same cursor variable, use this code:

DECLARE

TYPE rc is REF CURSOR;

v_rc rc;

hrc_rec hrc_tab%ROWTYPE;

v_hrc_descr VARCHAR2(20);

v_org_short_name VARCHAR2(30);

BEGIN

OPEN v_rc FOR SELECT * from hrc_tab;

dbms_output.put_line(‘Hierarchy Details’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(‘Code’||’ ‘||rpad(‘Description’,20,’ ‘));

dbms_output.put_line(rpad(‘-’,4,’-’)||’ ‘||rpad(‘-’,20,’-’));

LOOP

75

Cursors

049XCh02 10/17/02 12:58 PM Page 75

FETCH v_rc INTO hrc_rec;

EXIT WHEN v_rc%NOTFOUND;

dbms_output.put_line(to_char(hrc_rec.hrc_code)||’ ‘||

rpad(hrc_rec.hrc_descr,20,’ ‘));

END LOOP;

OPEN v_rc FOR SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code;

dbms_output.put_line(‘Hierarchy and Organization Details’);

dbms_output.put_line(‘------------------------’);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Description’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

LOOP

FETCH v_rc INTO v_hrc_descr, v_org_short_name;

EXIT WHEN v_rc%NOTFOUND;

dbms_output.put_line(rpad(v_hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_short_name,30,’ ‘));

END LOOP;

CLOSE v_rc;

END;

/

Here’s the output of this program:

Hierarchy Details

Code Description
-- --------------
1 CEO/COO
2 VP
3 Director
4 Manager
5 Analyst
Hierarchy and Organization Details

Hierarchy Description
--------- -----------------
CEO/COO Office of CEO ABC Inc.
CEO/COO Office of CEO XYZ Inc.
CEO/COO Office of CEO DataPro Inc.
VP Office of VP Sales ABC Inc.
VP Office of VP Mktg ABC Inc.
VP Office of VP Tech ABC Inc.

PL/SQL procedure successfully completed.

76

Chapter 2

049XCh02 10/17/02 12:58 PM Page 76

The following points are worth noting:

• The same cursor variable v_rc is used to point to two different queries.

• After you open v_rc for the first query and fetch the results, v_rc isn’t
closed. It’s simply reopened for a second query and a new resultset is
identified.

77

Cursors

TIP Once you’ve opened a cursor variable for a query, the
resultset is fixed. You have to reopen the cursor variable to
make it point to a different query.

TIP You don’t need to close a cursor variable before you
reopen it for a different query.

Example 2: Assigning Different Queries to the Same Cursor Variable Depending
on Runtime Conditions

Consider a scenario where a report is required of all organizations and their hier-
archy levels depending on different conditions, such as the following:

• All organizations that are located in more than one site

• All organizations that don’t have a particular hierarchy level

• All organizations that belong to the highest hierarchy level

• All organizations having the same hierarchy as those in a particular site

In this case, it suffices to use a single cursor variable that can be opened for
different SELECT statements depending on the report option. I implement this as
a SQL procedure (a stored subprogram) that takes the report option as the
parameter.

049XCh02 10/17/02 12:58 PM Page 77

Here’s the code for the procedure:

CREATE OR REPLACE PROCEDURE p_print_report(p_report_no NUMBER, p_title VARCHAR2)

IS

TYPE rc IS REF CURSOR;

v_rc rc;

v_hrc_descr VARCHAR2(20);

v_org_short_name VARCHAR2(30);

BEGIN

IF (p_report_no = 1) THEN

OPEN v_rc FOR SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND 1 < (SELECT count(os.site_no)

FROM org_site_tab os

WHERE os.org_id = o.org_id);

ELSIF (p_report_no = 2) THEN

OPEN v_rc FOR SELECT h.hrc_descr, o.org_short_name

FROM org_tab o, hrc_tab h

WHERE o.hrc_code = h.hrc_code

AND NOT EXISTS

(SELECT *

FROM org_tab o1

WHERE o1.org_id = o.org_id

AND o1.hrc_code = 2);

END IF;

dbms_output.put_line(p_title);

dbms_output.put_line(rpad(‘-’, length(p_title),’-’));

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Description’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

LOOP

FETCH v_rc INTO v_hrc_descr, v_org_short_name;

EXIT WHEN v_rc%NOTFOUND;

dbms_output.put_line(rpad(v_hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_short_name,30,’ ‘));

78

Chapter 2

CROSS-REFERENCE Chapter 5 covers stored subprograms.

049XCh02 10/17/02 12:58 PM Page 78

END LOOP;

CLOSE v_rc;

END p_print_report;

/

You can now execute this procedure in a SQL*Plus environment by passing
the report number and the corresponding title.

For the first report mentioned previously, here’s the code and its output:

SQL> set serverout on;

SQL> exec p_print_report(1, ‘List of Organizations located in more than one site’)

List of Organizations located in more than one site

Hierarchy Description

--------- --------------

VP Office of VP Sales ABC Inc.

VP Office of VP Mktg ABC Inc.

PL/SQL procedure successfully completed.

For the second report mentioned previously, here’s the code and its output:

SQL> exec p_print_report(2, ‘List of Organizations not having a VP’)

List of Organizations not having a VP

Hierarchy Description

--------- ----------------

CEO/COO Office of CEO ABC Inc.

CEO/COO Office of CEO XYZ Inc.

CEO/COO Office of CEO DataPro Inc.

PL/SQL procedure successfully completed.

79

Cursors

TIP Cursor variables and cursors aren’t interchangeable.
One can’t be used in place of the other.

049XCh02 10/17/02 12:58 PM Page 79

Returning Resultsets from Stored Subprograms

You can use cursor variables to return resultsets from stored functions and proce-
dures as well as packaged functions and procedures.

80

Chapter 2

TIP Cursor variables can’t be stored in the database. That
is, database table columns can’t be of type REF CURSOR or
SYS_REFCURSOR.

CROSS-REFERENCE I discuss using returning resultsets from
stored procedures in Chapter 5.

Cursor Expressions

Oracle9i has incorporated the facility to nest cursors in PL/SQL cursor decla-
rations in the form of cursor expressions. In this section, I discuss the method of
declaring and using cursor expressions in PL/SQL 9i. I also outline the method
of passing cursors as actual parameters to functions.

Why Use Cursor Expressions?

Cursor expressions eliminate the use of declaring and using multiple cursors and
hence result in a more effective optimization scheme by the SQL engine as it
involves only one SQL statement as opposed to multiple cursors, which result in
multiple SQL statements. Also, cursor expressions eliminate the use of compli-
cated joins involved in SQL SELECT statements. As a third benefit, Oracle9i
removes the limitation of using cursor expressions in SQL embedded in PL/SQL
code. Now you can use cursor expressions as part of PL/SQL cursors. Also, when
you use dynamic SQL, you can use cursor expressions and fetch into REF
CURSOR variables. In this case, they support complex binds and defines needed
for REF CURSORS. This isn’t supported by DBMS_SQL.

049XCh02 10/17/02 12:58 PM Page 80

Declaring Cursor Expressions

Basically, a cursor expression is a cursor declaration in PL/SQL in which the cur-
sor SELECT statement contains one column as a cursor. This results in the
declaration of nested cursors. A cursor expression is declared using this syntax:

CURSOR <parent-cursor-name> is

SELECT col_name, CURSOR (SELECT . . .) . . .

Here’s an example of a cursor expression:

CURSOR csr_hierarchy IS

SELECT h.hrc_descr,

CURSOR(SELECT o.org_long_name

FROM org_tab o

WHERE o.hrc_code = h.hrc_code) long_name

FROM hrc_tab h;

This provides the functionality of a single query returning sets of values from
multiple tables.

Prior to Oracle9i, CURSOR subqueries were supported in top-level SQL
SELECT statements only. For example, a SELECT statement such as this:

SELECT h.hrc_descr,

CURSOR(SELECT o.org_long_name

FROM org_tab o

WHERE o.hrc_code = h.hrc_code) long_name

FROM hrc_tab h;

runs perfectly well in releases prior to Oracle9i, with the following output in
SQL*Plus:

SQL> SELECT h.hrc_descr,
2 CURSOR(SELECT o.org_long_name
3 FROM org_tab o
4 WHERE o.hrc_code = h.hrc_code) long_name
5 FROM hrc_tab h;

HRC_DESCR LONG_NAME
--------— -----------
CEO/COO CURSOR STATEMENT : 2

CURSOR STATEMENT : 2

ORG_LONG_NAME

81

Cursors

049XCh02 10/17/02 12:58 PM Page 81

Office of CEO ABC Inc.
Office of CEO XYZ Inc.
Office of CEO DataPro Inc.

VP CURSOR STATEMENT : 2

CURSOR STATEMENT : 2

ORG_LONG_NAME

Office of VP Sales ABC Inc.
Office of VP Mktg ABC Inc.
Office of VP Tech ABC Inc.

Director CURSOR STATEMENT : 2

CURSOR STATEMENT : 2

no rows selected

HRC_DESCR LONG_NAME
---------- ------------
Manager CURSOR STATEMENT : 2

CURSOR STATEMENT : 2

no rows selected

HRC_DESCR LONG_NAME
---------- ------------
Analyst CURSOR STATEMENT : 2

CURSOR STATEMENT : 2

no rows selected

However, before Oracle9i, declaring a cursor in PL/SQL with this SELECT
statement resulted in the compilation error shown here:

SQL> DECLARE
2 CURSOR c1 IS
3 SELECT h.hrc_descr,
4 CURSOR(SELECT o.org_long_name
5 FROM org_tab o
6 WHERE o.hrc_code = h.hrc_code) long_name
7 FROM hrc_tab h;
8 BEGIN
9 NULL;
10 END;

82

Chapter 2

049XCh02 10/17/02 12:58 PM Page 82

11 /
CURSOR(SELECT o.org_long_name

*
ERROR at line 4:
ORA-06550: line 4, column 17:
PLS-00103: Encountered the symbol “SELECT” when expecting one of the following:
() - + mod not null others <an identifier>
<a double-quoted delimited-identifier> <a bind variable>
table avg count current exists max min prior sql stddev sum
variance execute multiset the both leading trailing forall
year month DAY_ HOUR_ MINUTE_ second TIMEZONE_HOUR_
TIMEZONE_MINUTE_ time timestamp interval date
<a string literal with character set specification>
<a number> <a single-quoted SQL stri
ORA-06550: line 6, column 48:
PLS-00103: Encountered the symbol “LONG_NAME” when expecting one of the
following:
; return returning and or

In Oracle8i and earlier, you could achieve the same function in PL/SQL by
using two cursors with corresponding cursor FOR LOOPs. Here’s the code for
the same:

BEGIN

FOR i IN (SELECT hrc_code, hrc_descr FROM hrc_tab) LOOP

FOR j IN (SELECT org_long_name

FROM org_tab

WHERE hrc_code = i.hrc_code) LOOP

dbms_output.put_line(i.hrc_descr||’ ‘||j.org_long_name);

END LOOP;

END LOOP;

END;

/

Using a cursor expression has the advantage of using only one SELECT state-
ment to achieve the result. As such, it is optimized more effectively. The method
of using a cursor expression in PL/SQL 9i is explained in the next section, “Using
Cursor Expressions.”

83

Cursors

TIP Multiple nesting using the CURSOR (subquery
SELECT) is allowed.

049XCh02 10/17/02 12:58 PM Page 83

A cursor expression isn’t allowed for an implicit cursor, in a view declaration,
or in a subquery of a parent query. It is allowed in a parent query (i.e., the outer-
most SELECT list of a query).

Using Cursor Expressions

As I mentioned earlier, a cursor expression enables a single query to return sets of
values from multiple tables. Here are the steps for using a cursor expression:

1. Declare the cursor expression with nested cursors.

2. Open the parent cursor. There’s no need to open the nested cursors.

3. Use nested loops that fetch first from the rows of the result set and then
from any nested cursors within these rows.

4. Declare a REF CURSOR to hold the nested cursor resultset while
fetching.

5. Close the parent cursor. There’s no need to close the nested cursors.

I wrote a PL/SQL function to use the cursor expression declared here. Here’s
the code:

create or replace function f_cursor_exp return NUMBER

is

TYPE rc is REF CURSOR;

/* declare the cursor expression */

CURSOR csr_hierarchy IS

SELECT h.hrc_descr,

CURSOR(SELECT o.org_long_name

FROM org_tab o

WHERE o.hrc_code = h.hrc_code) long_name

FROM hrc_tab h;

/* Declare a REF CURSOR variable to hold the nested cursor resultset

while fetching. */

hrc_rec rc;

v_hrc_descr VARCHAR2(20);

v_org_long_name VARCHAR2(60);

BEGIN

/* Open the parent cursor */

OPEN csr_hierarchy;

LOOP

84

Chapter 2

049XCh02 10/17/02 12:58 PM Page 84

/* fetch the column csr_hierarchy.hrc_descr,

then loop through the resultset of the nested cursor. */

FETCH csr_hierarchy INTO v_hrc_descr, hrc_rec;

EXIT WHEN csr_hierarchy%notfound;

/* Use a nested loop that fetches from the nested cursor

within the parent rows. */

LOOP

-- Directly fetch from the nested cursor, there is no need to open it.

FETCH hrc_rec INTO v_org_long_name;

EXIT WHEN hrc_rec%notfound;

DBMS_OUTPUT.PUT_LINE(v_hrc_descr ||’ ‘||v_org_long_name);

END LOOP;

END LOOP;

/* Close the parent cursor. No need to close the nested cursor. */

close csr_hierarchy;

RETURN (0);

EXCEPTION WHEN OTHERS THEN

RETURN (SQLCODE);

END;

/

The following points are worth noting:

• There’s no need to open the nested cursor. It’s implicitly opened when
a row is fetched from the parent cursor.

• There’s no need to close the nested cursor. It’s implicitly closed when the
parent cursor is closed.

Cursor Expressions Using Multiple Levels of Nested
Cursors

This example demonstrates multiple levels of nested cursors. In the following
code, I display the complete hierarchy, org, and org-site details:

create or replace function f_cursor_exp_complex return NUMBER

is

TYPE rc is REF CURSOR;

/* declare the cursor expression */

CURSOR csr_hierarchy IS

SELECT h.hrc_descr,

85

Cursors

049XCh02 10/17/02 12:58 PM Page 85

CURSOR(SELECT o.org_long_name,

CURSOR (SELECT s.site_descr

FROM org_site_tab os, site_tab s

WHERE os.site_no = s.site_no

AND os.org_id = o.org_id) as site_name

FROM org_tab o

WHERE o.hrc_code = h.hrc_code) long_name

FROM hrc_tab h;

/* Declare two REF CURSOR variables to hold the nested cursor resultset

while fetching. */

hrc_rec rc;

org_rec rc;

v_hrc_descr VARCHAR2(20);

v_org_long_name VARCHAR2(60);

v_site_name VARCHAR2(20);

BEGIN

/* Open the parent cursor */

OPEN csr_hierarchy;

LOOP

/* fetch the column csr_hierarchy.hrc_descr,

then loop through the resultset of the nested cursors. */

FETCH csr_hierarchy INTO v_hrc_descr, hrc_rec;

EXIT WHEN csr_hierarchy%notfound;

LOOP

/* Use a nested loop that fetches from the first nested cursor

within the parent rows */

FETCH hrc_rec INTO v_org_long_name, org_rec;

EXIT WHEN hrc_rec%notfound;

LOOP

-- Directly fetch from the second nested cursor, there is no need to open it

FETCH org_rec INTO v_site_name;

EXIT WHEN org_rec%notfound;

DBMS_OUTPUT.PUT_LINE(v_hrc_descr ||’ ‘||v_org_long_name||’ ‘||

v_site_name);

END LOOP;

END LOOP;

END LOOP;

/* Close the parent cursor. No need to close the nested cursors. */

close csr_hierarchy;

RETURN (0);

EXCEPTION WHEN OTHERS THEN

RETURN (SQLCODE);

END;

/

86

Chapter 2

049XCh02 10/17/02 12:58 PM Page 86

You can now execute this function as shown here:

SQL> set serverout on;

SQL> VAR ret_code NUMBER;

SQL> exec :ret_code := f_cursor_exp_complex;

Cursor Expressions as Arguments to Functions
Called from SQL

I mentioned earlier that you can use cursor variables as formal parameters to
a function. Also, cursor expressions refer to actual cursors. Now the following
question arises: Can cursor expressions be used as actual parameters to such
functions having REF CURSORS or SYS_REFCURSOR as formal parameter types?
The answer to this question is yes, provided the function is called in a top-level
SQL statement only.

Consider the second example presented in the earlier section “Dynamism in
Using Cursor Variables.” It describes a scenario in which a report is required of all
organizations and their hierarchy levels depending on different conditions such as

• All organizations that are located in more than one site

• All organizations that don’t have a particular hierarchy level

• All organizations that belong to the highest hierarchy level

• All organizations having same hierarchy as those in a particular site

In this case, it suffices to write a function that takes a cursor expression as
input along with the title of the report and generates the report. The cursor
expression is passed as an actual parameter with different WHERE conditions
each time, but the columns in the SELECT will be the same each time. Here’s the
code for this function:

CREATE OR REPLACE FUNCTION f_report(p_cursor SYS_REFCURSOR, p_title VARCHAR2)

RETURN NUMBER

IS

v_hrc_descr VARCHAR2(20);

v_org_short_name VARCHAR2(30);

v_ret_code NUMBER;

BEGIN

87

Cursors

049XCh02 10/17/02 12:58 PM Page 87

BEGIN

dbms_output.put_line(p_title);

dbms_output.put_line(rpad(‘Hierarchy’,20,’ ‘)||’ ‘||

rpad(‘Organization’,30,’ ‘));

dbms_output.put_line(rpad(‘-’,20,’-’)||’ ‘||rpad(‘-’,30,’-’));

LOOP

FETCH p_cursor INTO v_hrc_descr, v_org_short_name;

EXIT WHEN p_cursor%NOTFOUND;

dbms_output.put_line(rpad(v_hrc_descr,20,’ ‘)||’ ‘||

rpad(v_org_short_name,30,’ ‘));

END LOOP;

v_ret_code := 1;

EXCEPTION WHEN OTHERS THEN

v_ret_code := SQLCODE;

END;

RETURN (v_ret_code);

END;

/

You can now invoke this function with a cursor expression as an actual
parameter to generate the different reports mentioned previously. Here’s the
SELECT statement:

SELECT ‘Report Generated on ‘||TO_CHAR(SYSDATE,’MM/DD/YYYY’) “Report1”

FROM DUAL

WHERE f_report(

CURSOR(SELECT h.hrc_descr, o.org_short_name

FROM hrc_tab h, org_tab o

WHERE o.hrc_code = h.hrc_code

AND 1 < (SELECT count(os.site_no)

FROM org_site_tab os

WHERE os.org_id = o.org_id)

),

‘List of Organizations located in more than one site’

) = 1;

Because dbms_output.put_line is being called from inside a function used
in a SQL SELECT, the output buffer should be flushed. You do this by executing
a small procedure called “flush,” as follows:

88

Chapter 2

049XCh02 10/17/02 12:58 PM Page 88

CREATE OR REPLACE PROCEDURE flush

IS

BEGIN

NULL;

END;

/

Here’s the output of this SELECT statement after executing flush:

SQL> SELECT ‘Report Generated on ‘||TO_CHAR(SYSDATE,’MM/DD/YYYY’) “Report1”
2 FROM DUAL
3 WHERE f_report(
4 CURSOR(SELECT h.hrc_descr, o.org_short_name
5 FROM hrc_tab h, org_tab o
6 WHERE o.hrc_code = h.hrc_code
7 AND 1 < (SELECT count(os.site_no)
8 FROM org_site_tab os
9 WHERE os.org_id = o.org_id)
10), ‘List of Organizations located in more than one site’
11) = 1;

Report1

Report Generated on 02/13/2002

SQL> exec flush
List of Organizations located in more than one site
Hierarchy Organization
-------- --------------
VP Office of VP Sales ABC Inc.
VP Office of VP Mktg ABC Inc.

PL/SQL procedure successfully completed.

You can use the same function to generate a different report—for example,
a report that contains a list of organizations that don’t have a vice president (VP).
In this case, the function is invoked with a different cursor expression. Here’s the
second SELECT statement:

SELECT ‘Report Generated on ‘||TO_CHAR(SYSDATE,’MM/DD/YYYY’) “Report2”

FROM DUAL

WHERE f_report(

CURSOR(SELECT h.hrc_descr, o.org_short_name

FROM hrc_tab h, org_tab o

WHERE o.hrc_code = h.hrc_code

AND NOT EXISTS (SELECT *

89

Cursors

049XCh02 10/17/02 12:58 PM Page 89

FROM org_tab o1

WHERE o1.org_id = o.org_id

AND o1.hrc_code = 2)

), ‘List of Organizations not having a VP’

) = 1;

Here’s the output of the second SELECT statement (the output buffer is
flushed in this case also):

SQL> SELECT ‘Report Generated on ‘||TO_CHAR(SYSDATE,’MM/DD/YYYY’) “Report2”
2 FROM DUAL
3 WHERE f_report(
4 CURSOR(SELECT h.hrc_descr, o.org_short_name
5 FROM hrc_tab h, org_tab o
6 WHERE o.hrc_code = h.hrc_code
7 AND NOT EXISTS (SELECT *
8 FROM org_tab o1
9 WHERE o1.org_id = o.org_id
10 AND o1.hrc_code = 2)
11), ‘List of Organizations not having a VP’
12) = 1;

Report2

Report Generated on 02/13/2002

SQL> exec flush
List of Organizations not having a VP
Hierarchy Organization
--------- ---------------
CEO/COO Office of CEO ABC Inc.
CEO/COO Office of CEO XYZ Inc.
CEO/COO Office of CEO DataPro Inc.

PL/SQL procedure successfully completed.

Instead of using the function f_report with dbms_output.put_line called to
display output, you can directly generate the output using a SELECT column list.
For this I use the following function:

90

Chapter 2

049XCh02 10/17/02 12:58 PM Page 90

CREATE OR REPLACE FUNCTION f_cursor(p_cursor SYS_REFCURSOR)

RETURN NUMBER

IS

v_org_short_name VARCHAR2(30);

v_cnt NUMBER := 0;

v_ret_code NUMBER;

BEGIN

BEGIN

LOOP

FETCH p_cursor INTO v_org_short_name;

EXIT WHEN p_cursor%NOTFOUND;

v_cnt := v_cnt + 1;

END LOOP;

IF (v_cnt > 0) THEN

v_ret_code := 1;

ELSE

v_ret_code := 0;

END IF;

EXCEPTION WHEN OTHERS THEN

v_ret_code := SQLCODE;

END;

RETURN (v_ret_code);

END;

/

Then you can generate the first report by using the following SELECT state-
ment (there’s no need to flush the output buffer):

SELECT rpad(h.hrc_descr,20,’ ‘) “Hierarchy”,

rpad(o.org_short_name,30,’ ‘) “Organization”

FROM hrc_tab h, org_tab o

WHERE h.hrc_code = o.hrc_code

AND f_cursor(

CURSOR(SELECT o1.org_short_name

FROM org_tab o1

WHERE o1.org_id = o.org_id

AND 1 < (SELECT count(os.site_no)

FROM org_site_tab os

WHERE os.org_id = o1.org_id)

)

) = 1;

91

Cursors

049XCh02 10/17/02 12:58 PM Page 91

Here’s the output generated:

SQL> SELECT rpad(h.hrc_descr,20,’ ‘) “Hierarchy”,
2 rpad(o.org_short_name,30,’ ‘) “Organization”
3 FROM hrc_tab h, org_tab o
4 WHERE h.hrc_code = o.hrc_code
5 AND f_cursor(
6 CURSOR(SELECT o1.org_short_name
7 FROM org_tab o1
8 WHERE o1.org_id = o.org_id
9 AND 1 < (SELECT count(os.site_no)
10 FROM org_site_tab os
11 WHERE os.org_id = o1.org_id)
12)
13) = 1;

Hierarchy Organization
--------- ----------------
VP Office of VP Sales ABC Inc.
VP Office of VP Mktg ABC Inc.

Similarly, you can generate the second report by using the following SELECT
(there’s no need to flush the output buffer):

SELECT rpad(h.hrc_descr,20,’ ‘) “Hierarchy”,

rpad(o.org_short_name,30,’ ‘) “Organization”

FROM hrc_tab h, org_tab o

WHERE h.hrc_code = o.hrc_code

AND f_cursor(

CURSOR(SELECT o1.org_short_name

FROM org_tab o1

WHERE o1.org_id = o.org_id

AND NOT EXISTS (SELECT *

FROM org_tab o2

WHERE o2.org_id = o1.org_id

AND o2.hrc_code = 2)

)

) = 1;

92

Chapter 2

049XCh02 10/17/02 12:58 PM Page 92

Here’s the output generated:

SQL> SELECT rpad(h.hrc_descr,20,’ ‘) “Hierarchy”,
2 rpad(o.org_short_name,30,’ ‘) “Organization”
3 FROM hrc_tab h, org_tab o
4 WHERE h.hrc_code = o.hrc_code
5 AND f_cursor(
6 CURSOR(SELECT o1.org_short_name
7 FROM org_tab o1
8 WHERE o1.org_id = o.org_id
9 AND NOT EXISTS (SELECT *
10 FROM org_tab o2
11 WHERE o2.org_id = o1.org_id
12 AND o2.hrc_code = 2)
13)
14) = 1;

Hierarchy Organization
--------- ---------------
CEO/COO Office of CEO ABC Inc.
CEO/COO Office of CEO XYZ Inc.
CEO/COO Office of CEO DataPro Inc.

PL/SQL procedure successfully completed.

Both the functions f_report and f_cursor are invoked by passing a cursor
expression as an actual parameter.

You can’t use cursor expressions as actual parameters to functions with for-
mal parameters of type REF CURSOR or SYS_REFCURSOR if the function is
called in PL/SQL. For example, the following code is invalid:

DECLARE

v_num NUMBER;

BEGIN

v_num := f_report(

CURSOR(SELECT h.hrc_descr, o.org_long_name

FROM hrc_tab h, org_tab o

WHERE o.hrc_code = h.hrc_code

AND 1 < (SELECT count(os.site_no)

FROM org_site_tab os

WHERE os.org_id = o.org_id)

),

‘List of Organizations located in more than one site’

) ;

END;

/

93

Cursors

049XCh02 10/17/02 12:58 PM Page 93

The preceding code raises the following error:

SQL> DECLARE
2 v_num NUMBER;
3 BEGIN
4 v_num := f_report(
5 CURSOR(SELECT h.hrc_descr, o.org_long_name
6 FROM hrc_tab h, org_tab o
7 WHERE o.hrc_code = h.hrc_code
8 AND 1 < (SELECT count(os.site_no)
9 FROM org_site_tab os
10 WHERE os.org_id = o.org_id)
11),
12 ‘List of Organizations located in more than one site’
13) ;
14 END;
15 /

CURSOR(SELECT h.hrc_descr, o.org_long_name
*

ERROR at line 5:
ORA-06550: line 5, column 13:
PLS-00405: subquery not allowed in this context
ORA-06550: line 4, column 6:
PL/SQL: Statement ignored

Summary

This chapter thoroughly covered PL/SQL cursors. You learned the various meth-
ods of using cursors and cursor variables in a PL/SQL environment. You also
learned about cursor expressions, a new feature of PL/SQL 9i.

The next chapter presents a discussion of user-defined record types and
index-by tables in PL/SQL.

94

Chapter 2

049XCh02 10/17/02 12:58 PM Page 94

